当前位置: 网站首页 > 正文

张伟

职称职务:教授

E-mail:sandyzhang0@yahoo.com

基本信息

张伟,男,职称:教授;联系方式:(010)-67392867;加拿大西安大略大学博士后,加拿大多伦多大学访问教授。

讲授课程:高等非线性动力学、非线性分析与应用、分叉理论与混沌动力学,微分动力系统、微分流形与微分拓扑。

主要社会(学术)兼职

中国力学学会第八届、第九届理事会 常务理事(2006.11-2014.11)

中国力学学会动力学与控制专业委员会 主任(2007.11-2011.11)

中国振动工程学会理事会 常务理事(2015.11-至今)

中国振动工程学会非线性振动专业委员会 主任(2011.11-至今)

中国力学学会动力学与控制专业委员会 副主任(2011.11-至今)

国家自然科学基金委员会数理科学部国家杰出青年科学基金项目 评审组专家(2006.6-2015.7)

研究方向

1.高维非线性系统复杂动力学

2.新型材料结构的非线性振动

3.航空航天飞行器结构非线性动力学与控制

4.可变体飞行器非线性动力学

科研项目

作为项目负责人承担的项目:

1.国家自然科学基金重点项目:“双稳态复合和压电复合层合结构的高维非线性动力学及跳跃现象”,2019.1-2023.12,批准号:11832002,320万元。

2.国家自然科学基金国家重大科研仪器研制项目:“超大型电磁振动试验台动力学设计、控制及装备研制”,2015.1-2019.12,批准号:11427801,178万元。

3.国家自然科学基金重大项目课题:“大型空间结构展开锁定后的非线性动力学建模与分析”,2013.1-2017.12,批准号:11290152,480万元。

4.国家自然科学基金项目:“伸缩式可变体结构的非线性动力学建模、理论分析与实验研究”,2011.1-2013.12,批准号:11072008,58万元。

5.北京市属高等学校人才强教深化计划“高层次人才资助计划”项目:“多自由度非线性系统的复杂动力学理论及在结构系统中的应用”,2011.1-2013.12,300万元。

6.国家自然科学基金重点项目:“高维非线性系统动力学理论及在机械结构中的应用”,2008.1-2011.12,批准号:10732020,200万元。

7.国家杰出青年科学基金项目:“动力系统的分岔、混沌”, 2005.1-2008.12,批准号:10425209,140万元。

8.北京市学术创新团队项目:“机械系统的动态分析与测试”,2007.1-2009.12,150万元。

9.北京市人才强教项目:“非线性系统复杂动力学研究”,2007.1-2009.12,90万元。

10.北京市创新团队项目:“非线性机械柔性结构的全局分叉和混沌动力学的研究”,2005.1-2005.12,40万元。

11.国家自然科学基金项目:“非线性动力学与控制高级讲习班”,2006.1-2006.12,批准号:10372008,15万元。

12.国家自然科学基金项目:“多自由度非线性机械柔性结构的全局分叉和混沌动力学”,2004.1-2006.12,批准号:10372008,25万元。

13.海外青年学者合作研究基金(国家杰出青年科学基金B类)项目:“一般力学”,2004.1- 2006.12,批准号:10328204,40万元。

14.北京市自然科学基金项目:“粘弹性传动带系统的动态建模和非线性动力学研究”,2003.1-2005.12,批准号:3032006,10万元。

15.国家自然科学基金项目:“高维参数激励非线性机械系统的全局动力学的研究”,2001.1-2003.12,批准号:10072004,21万元。

16.国家自然科学基金项目:“含参数激励非线性动力系统的高余维退化分叉和混沌”,1995,1-1997.12,批准号:19472047,6万元。

17.国家自然科学青年基金项目:“参数与强迫激励联合作用下非线性振动系统的分叉与混沌”,1992.1-1993.12,批准号:19102014,1.5万元。

18.北京市自然科学基金项目:“超低速情况下柔性机械臂的非线性动力学问题的研究”,1999.9-2002.9,批准号:3992004,10万元。

主要学术成果(论文、专利、专著、译著等)

1.W.Zhang, R.Q.WuandK.Behdinan,Nonlinear dynamic analysis near resonance of a beam-ring structure for modelingcircular truss antenna under time-dependent thermal excitation,Aerospace Science and Technology86, p296-311, 2019.

2.W. Zhang, Q. L. Wu and W. S.Ma,Chaotic wave motions and chaotic dynamic responses of piezoelectric laminated composite rectangular thin plate under combined transverse and in-plane excitations,International Journal of Applied Mechanics10, ID 1850114,2018.

3.W. Zhang, Q. L. Wu, M. H. Yao and E. H. Dowell, Analysis on global and chaotic dynamics of nonlinear wave equations for truss core sandwich plate,Nonlinear Dynamics94, p21-37, 2018.

4.W. Zhang, Z. Fang, X. D. Yang and F. Liang, A series solution for free vibration of moderately thick cylindrical shell with general boundary conditions,Engineering Structures165, p422-440, 2018.

5.W. Zhang, T. Liu, A. Xi and Y. N. Wang, Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes,Journal of Sound and Vibration423,p65-99, 2018.

6.W. Zhang, S. W. Yang and J. J. Mao, Nonlinear radial breathing vibrations of CFRP laminated cylindrical shell with non-normal boundary conditions subjected to axial pressure and radial line load at two ends,Composite Structures190, p52-78, 2018.

7.W. Zhang, J.Chen, Y. F. Zhang and X. D. Yang,Continuous model and nonlinear dynamic responses of circular mesh antenna clamped at one side,Engineering Structures151, p115-135, 2017.

8.W. Zhang,L. L. Chen, X. Y. Guo L. Sun,Nonlinear dynamical behaviors of deploying wings in subsonic air flow,Journal of Fluids and Structures74, p340-355, 2017.

9.W. Zhang,W. H. Hu, D. X. Cao and M. H. Yao,Vibration frequencies and modes of a z-shaped beam with variable folding angles,ASMEJournal of Vibration and Acoustics138, 041004, 2016.

10.W. Zhang, D. M. Wang and M. H. Yao, Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam,Nonlinear Dynamics78, p839-856, 2014.

11.W. Zhang,y.t. Huang and M. H. Yao, Multi-pulse homoclinic orbits and chaotic dynamics of a parametrically excited nonlinear nano-oscillator with coupled cubic nonlinearities,Science China: Physics, Mechanics and Astronomy57, p1098-1110, 2014.

12.W. Zhang, S. F. Lu and X. D. Yang, Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate,Nonlinear Dynamics76, p69-93, 2014.SCI收录.

13.W. Zhang, J. E. Chen, D. X. Cao and L. H. Chen, Nonlinear dynamic responses of a truss core sandwich plate,Composite Structures108, p367-386, 2014.

14.W. Zhang, L. Sun, X. D. Yang and P. Jia, Nonlinear dynamic behaviors of a deploying-and-retreating wing with varying velocity,Journal ofSound and Vibration332, p6785-6797, 2013.

15.W. Zhang and W. L. Hao, Multi-pulse chaotic dynamics of six-dimensional non-autonomous nonlinear system for a composite laminated piezoelectric rectangular plate,Nonlinear Dynamics73, p1005-1033, 2013.

16.W. Zhang, R. Zhou and J. W. Zu, Nonlinear vibrations of a shell-shaped workpiece during high-speed milling process,Nonlinear Dynamics72, p767-787, 2013.

17.W. Zhang,M. H. Zhao and X. Y. Guo, Nonlinear responses of a symmetric cross-ply composite laminated cantilever rectangular plate under in-plane and moment excitations,Composite Structures100, p554-565, 2013.

18.W. Zhang, Y. H. Qianand S. K. Lai,Extended homotopy analysis method for multi- degree-of-freedom non-autonomous nonlinear dynamical systems and its application,Acta Mechanica223, p2537-2548, 2012.

19.W. Zhang and M. H. Zhao,Nonlinear vibrations ofacomposite laminated cantilever rectangular plate with one-to-oneinternal resonance,Nonlinear Dynamics70, p295-313, 2012.

20.W. Zhang, F. B. Gao and M. H. Yao, Periodic solutions and stability of a tethered satellite system,Mechanics Research Communications44, p24-29, 2012.

21.W. Zhang, Y. X. Hao, X. Y. Guo and L. H. Chen,Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations,Meccanica47, p985-1014, 2012.

22.W. Zhang, Y. X. Hao and J. Yang,Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges,Composite Structures94, p1075-1086, 2012.

23.W. Zhang, M. J. Gao and M. H. Yao, Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt,International Journal of Modern Physics B25, p2299-2322, 2011.

24.W. Zhang, Y. H. Qian, M. H. Yao and S. K. Lai,Periodic solutions for multi-degree-of-freedom strongly nonlinear coupled van der Pol oscillators by homotopy analysis method,Acta Mechanica217, p269-285, 2011.

25.W. Zhangand S. B. Li,Resonant chaotic motions of a buckled rectangular thin plate with parametrically and externally excitations,Nonlinear Dynamics62, p673-686, 2010.

26.W. Zhang and X. L. Yang,Transverse nonlinear vibrations of a circular spinning disk with varying rotating speed,Science in ChinaSeries G: Physics, Mechanics & Astronomy53, p1536-1553, 2010.

27.W. Zhang, J. H. Zhang and M. H. Yao, The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate,Nonlinear Analysis: Real World Applications11, p1442-1457, 2010.

28.W. Zhang, J. H. Zhang, M. H. Yao and Z. G. Yao, Multi-pulse chaotic dynamics ofnon-autonomous nonlinear systemfor alaminated composite piezoelectric rectangular plate,Acta Mechanica211, p23-47, 2010.

29.W. Zhang, J. Yang, Y. X. Hao,Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory,Nonlinear Dynamics59, p619-660, 2010.

30.W. Zhang, Z. G. Yao and M. H. Yao, Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance,Science in ChinaSeries E:Technological Sciences52, p731-742, 2009.

31.W. Zhang, M. H. Yao and J. H. Zhang,Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam,Journal ofSound and Vibration319, p541-569, 2009.

32.W. Zhang and M. H. Yao, Theories of multi-pulse global bifurcations for high- dimensional systems and applications to cantilever beam,International Journal of Modern Physics B22, p4089-4141, 2008.

33.W. Zhang andJ. W. Zu, Transient and steady nonlinear responses for a rotor-active magnetic bearings system withtime-varying stiffness,Chaos, Solitons and Fractals38, p1152-1167, 2008.

34.W. Zhang, J. W. Zu and F. X. Wang,Global bifurcations and chaosfor a rotor-active magnetic bearing system with time-varying stiffness,Chaos, Solitons and Fractals35, p586-608, 2008.SCI收录.

35.W. Zhang and C. Z. Song,Higher-dimensional periodic and chaotic oscillations for a parametrically excited viscoelastic moving belt with multiple internal resonances,International Journal of Bifurcation and Chaos17, p1637-1660, 2007.

36.W. Zhang and D. X. Cao,Studies on bifurcation and chaos of a string-beam coupled system with two-degrees-of-freedom,Nonlinear Dynamics45, p131-147, 2006.

37.W. Zhang and M. H. Yao, Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt,Chaos, Solitons and Fractals28, p42-66, 2006.

38.W. Zhang, C. Z. Song and M. Ye, Further studies on nonlinear oscillations and chaos of a symmetric cross-ply laminated thin plate under parametric excitation,International Journal of Bifurcation and Chaos16,p325-347, 2006.

39.W. Zhang, M. H. Yao and X. P. Zhan, Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness,Chaos, Solitons and Fractals27, p175-186,2006.

40.W. Zhang and X. P. Zhan, Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness,Nonlinear Dynamics41, p331-359, 2005.

41.W. Zhang, Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam,Chaos, Solitons and Fractals26, p731-745, 2005.

42.W. Zhang, F. X. Wang and M. H. Yao,Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam,Nonlinear Dynamics40, p251-279, 2005.

43.W. Zhang, F. X. Wang and Jean W. Zu, Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation,Chaos, Solitons and Fractals24, p977-998, 2005.

44.W. Zhang, F. X. Wang and Jean W. Zu, Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillations of a cantilever beam,Journal of Sound and Vibration278, p949-974, 2004.

45.W. Zhang and Y. Tang, Global dynamics of the cable under combined parametrical and external excitations,International Journal of Non-Linear Mechanics37,p505-526, 2002.

46.W. Zhang, Global and chaotic dynamics for a parametrically excited thin plate,Journal of Sound and Vibration239,p1013-1036, 2001.

47.W. Zhang, Z. M. Liu and P. Yu, Global dynamics of a parametrically and externally excited thin plate,Nonlinear Dynamics24, p245-268, 2001.

48.W. Zhang and P. Yu, A study of the limit cycles associated with a generalized codimension-3 Lienard oscillator,Journal of Sound and Vibration231, p145-173, 2000.

49.W. Zhang and M. Ye, Local and global bifurcations of valve mechanism,Nonlinear Dynamics6, p301-316, 1994.

50.J. J. Mao and W. Zhang, Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces,Composite Structures216, p392-405, 2019.

51.S. W. Yang, W. Zhang and J. J. Mao, Nonlinear vibrations of carbon fiber reinforced polymer laminated cylindrical shell under non-normal boundary conditions with 1:2 internal resonance,European Journal of Mechanics A-Solids74, p317-339, 2019.

52.X. Y. Guo, Y. Zhang, W. Zhang and L. Sun,Theoretical and experimental investigation on the nonlinear vibration behavior of Z-shaped folded plates with inner resonance,Engineering Structures182, p123-140, 2019.

53.Y. X. Hao, Z. Cao, W. Zhang, J. Chen and M. H. Yao, Stability analysis for geometric nonlinear functionally graded sandwich shallow shell using a new developed displacement field,Composite Structures210, p202-216, 2019.

54.R. Q.Wu, W. Zhang andK. Behdinan,Vibration frequency analysis of beam-ring structure for circular deployable truss antenna,International Journal of Structural Stability and Dynamics19,ID1950012,2019.

55.J. J. Maoand W. Zhang, Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation,Composite Structures203, p551-565, 2018.

56.Y. F. Zhang, W. Zhangand Z. G. Yao,Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate,Engineering Structures173, p89-106, 2018.

57.Q. L.Wu, W. Zhang and E. H. Dowell, Detecting multi-pulse chaotic dynamics of high-dimensional non-autonomous nonlinear system for circular mesh antenna,International Journal of Non-Linear Mechanics102, p25-40, 2018.

58.A. W.Wang, H. Y. Chen, Y. X. Hao and W. Zhang,Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets,Results in Physics9, p550-559, 2018.

59.S. F. Lu, W. Zhang and X. J. Song, Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force,Acta Mechanica Sinica34, p303-314, 2018.

60.J. F. Wang and W. Zhang, An equivalent continuum meshless approach for material nonlinear analysis of CNT-reinforced composites,Composite Structures188, p116-125, 2018.

61.R. Q. Wu, W. Zhang and M. H. Yao,Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness,Mechanical Systems and Signal Processing100, p113-134, 2018.

62.Y. X. Hao, S. W. Yang, W. Zhang, M. H. Yao and A. W. Wang, Flutter of high-dimension nonlinear system for a FGM truncated conical shell,Mechanics of Advanced Materials & Structures25, p47-61, 2018.

63.Y. X. Hao, Y. Niu, W. Zhang, M. H. Yao and A. W. Wang, Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects,Meccanica53, p95-109, 2018.

64.T. J.Yu, W. Zhang and X. D. Yang,Global bifurcations and chaotic motions of a flexible multi-beam structure,International Journal of Non-Linear Mechanics95, p264-271, 2017.

65.T.Liu, W. Zhang and J. F. Wang,Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends,Nonlinear Dynamics90, p1393-1417, 2017.

66.Y. F. Zhang, M. H. Yao, W. Zhang and B. C. Wen,Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance,Aerospace Science and Technology68, p441-453, 2017.

67.Y. Sun, W. Zhang and M. H. Yao, Multi-pulse chaotic dynamics of circular mesh antenna with 1:2 internal resonance,International Journal of Applied Mechanics9,1750060, 2017.

68.T. J. Yu, W. Zhang and X. D. Yang,Global dynamics of an autoparametric beam structure,Nonlinear Dynamics88, p1329-1343, 2017.

69.X. Y. Guo and W. Zhang, Nonlinear vibrations of a reinforced composite plate with carbon nanotubes,Composite Structures135, p96-108, 2016.

70.Y. J. Qian, W. Zhang, X. D. Yang and M. H. Yao,Energy analysis and trajectory design for low-energy escaping orbit in Earth-Moon system,Nonlinear Dynamics85, p463-478, 2016.

71.Z. C. Wei, W. Zhang and M. H. Yao,On the periodic orbit bifurcating from one single non-hyperbolic equilibrium in a chaotic jerk system,Nonlinear Dynamics82, p1251-1258, 2015.

72.Z. C. Wei, P. Yu, W. Zhang and M. H. Yao,Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system,Nonlinear Dynamics82, p131-141, 2015.

73.Y. X. Hao, W. Zhang, J. Yang and S. B. Li, Nonlinear dynamics of a functionally graded thin simply-supported plate under a hypersonic flow,Mechanics of Advanced Materials and Structures22, p619-632, 2015.

74.Z. C. Wei, W. Zhang, Z. Wang and M. H. Yao,Hidden attractors and dynamical behaviors in an extended Rikitake system,International Journal of Bifurcation and Chaos25,1550028-11, 2015.

75.Z. C. Wei and W. Zhang,Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium,International Journal of Bifurcation and Chaos24, 1450127-14, 2014.

76.M. H. Yao, W. Zhang and J. W. Zu,Multi-pulse Chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt,Journal ofSound and Vibration331, p2624-2653, 2012.

77.Y. X. Hao, W. Zhang and J. Yang,Nonlinear oscillations of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method,Composites Part B: Engineering42, p402-413, 2011.

78.L. H. Chen, W. Zhang and F. H. Yang,Nonlinear dynamics ofhigher-dimensionalsystem for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations,Journal ofSound and Vibration329, p5321-5345, 2010.

个人自述(个人经历、获奖情况等)

张伟博士任北京工业大学机电学院教授,博士生导师,机械结构非线性振动与强度北京市重点实验室主任,航天器系统与动力学国际联合实验室副主任,动力学与控制研究所所长。1997年在天津大学力学系一般力学专业获博士学位,1997年破格晋升为教授。1999年加拿大西安大略大学博士后,2002-2003年加拿大多伦多大学机械与工业工程系访问教授,2006年起香港城市大学多次访问教授。2007年入选北京市属高等学校人才强教计划“学术创新团队”,2010年入选北京市属高等学校人才强教深化计划“高层次人才资助计划”。张伟教授在国际和国内学术界有着广泛的影响,先后担任中国力学学会常务理事,动力学与控制专业委员会主任和副主任,中国振动工程学会常务理事,非线性振动专业委员会主任等职务,国家自然科学基金委员会数理科学部国家杰出青年科学基金评委,国家自然科学基金委员会力学学科评审组专家,“应用力学学报”副主编,“Acta Mechanica Sinica”编委,科学出版社“非线性动力学丛书”副主编,“International Journal of Dynamics and Control”副主编。担任多个国家重点实验室和省部级重点实验室学术委员会委员。

张伟教授在大型空间可展开结构非线性动力学与振动,可变体飞行器的非线性振动,高维非线性系统的全局摄动法和多脉冲混沌动力学,石墨烯增强复合材料板壳、压电复合材料板壳和功能梯度材料板壳结构的高维非线性系统振动理论和实验研究方面取得了国际上公认的研究成果。所获得的创新性成果为工程中高维非线性系统复杂动力学与振动的分析、结构动态特性设计与改进提供了强有力的理论依据与技术支撑。张伟教授分别于2004年获国家杰出青年科学基金项目,2007年和2018年获国家自然科学基金重点项目二项,2012年获国家自然科学基金重大项目课题,2014年获国家自然科学基金重大仪器研制项目,主持并完成9项国家自然科学基金项目。发表学术论文600多篇,在国际学术期刊发表论文260多篇并被SCI收录,300多篇论文被EI收录,被SCI论文引用2870多次,SCI他引1680多次,5篇论文被高被引ESI收录,在科学出版社出版学术专著4本。张伟教授于2010年获得北京市科学技术奖(基础研究)三等奖,第1获奖人;2002和2004年获天津市自然科学二等奖二项,第2获奖人。

已有30多名博士研究生毕业,60多名硕士研究生毕业,10多名博士后出站。目前正在指导23名博士生,13名硕士生,在站博士后2人。1名博士生2008年获得北京市首届优秀博士学位论文,1名博士生获得2009年全国优秀博士学位论文提名奖。在已经毕业的硕士研究生中,有多名学生在美国、加拿大和香港的著名大学攻读博士学位,有多名学生在国内著名大学攻读博士学位,已经有10多位博士生去美国和加拿大的著名大学进行联合培养,包括乔治亚理工大学(Georgia Institute of Technology)、莱斯大学(Rice University)、弗吉尼亚理工大学(Virginia Polytechnic Institute and State University)、多伦多大学(University of Toronto)、麦吉尔大学(McGill University)、华盛顿大学(University of Washington)、杜克大学(Duke University)、马里兰大学(University of Maryland)。

个人风采

学校地址:北京市朝阳区平乐园100号
邮政编码:100124

  • 北京工业大学
    研究生招生

  • 北京工业大学
    研究生教育

Copyright © 北京工业大学研究生院版权所有