荣誉和社会兼职
入选北京市海外高层次人才、北京工业大学高端人才队伍建设计划;振动工程学会高级会员;受邀参加第16届全国转子动力学学术会议作邀请报告、受邀参加2024年全国设备监测诊断与维护学术会议作邀请报告、受邀担任2024年国际会议The International Workshop on Fault Diagnostics and Prognostics分会场主席;担任期刊Journal of Dynamics, Monitoring and Diagnostics青年编委会副主任、担任期刊《兵器装备工程学报》青年编委、担任IEEE/ASME/Elsevier旗下10余本国际权威期刊审稿人;荣获IEEE Transactions on Instrumentation & Measurement “Outstanding Reviewers of 2024”(2024年度杰出审稿人)。
学术论文
以第一作者/通讯作者发表 SCI论文 30余篇、EI 论文 8 篇, 包括《机械工程学报》优秀论文 1 篇、领跑者 5000中国精品科技期刊顶尖学术论文1篇、ESI 高被引论文7 篇、热点论文 2 篇。论文详见谷歌学术,部分论文如下:
[1] Zhao Dezun, Huang Xiaofan, Wang Tianyang, Cui Lingli. Generalized reassigning transform: algorithm and applications[J]. Reliability Engineering & System Safety, 2025, 255: 110677. (面向瞬态、谐波类特征高聚集时频表征,基于基函数几何特性求解的新尝试)
[2] Zhao Dezun, Shao Depei, Cui Lingli. CTNet: a data-driven time-frequency technique for wind turbines fault diagnosis under time-varying speeds[J]. ISA Transactions, 2024, 154: 335-351.(面向密集、交叉频率高聚集时频表征,深度学习赋能时频分析领域的新探索,模型训练代码已开源,具体链接见论文原文)
[3] Zhao Dezun, Wang Honghao, Cui Lingli. Frequency-chirprate synchrosqueezing-based scaling chirplet transform for wind turbine nonstationary fault feature time–frequency representation[J]. Mechanical Systems and Signal Processing, 2024, 209: 111112. (面向密集、交叉频率高聚集时频表征,基于高维空间概念的新拓展)
[4] Zhao Dezun, Cai Wenbin, Cui Lingli. Adaptive thresholding and coordinate attention-based tree-inspired network for aero-engine bearing health monitoring under strong noise[J]. Advanced Engineering Informatics, 2024, 61: 102559.(面向强背景噪声干扰下航空发动机轴承分层智能诊断,基于卷积神经网络与浅层机器学习融合的新模型)
[5] Zhao Dezun, Cui Lingli, Liu Dongdong. Bearing weak fault feature extraction under time-varying speed conditions based on frequency matching demodulation transform[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(3): 1627-1637. (面向强背景噪声干扰下轴承故障特征提取,基于广义解调的匹配解调变换新方法)