代表性成果与荣誉
发表的论文:
[1]Zhao Xu,Cheng Weihu, ZhangPengyue. Extreme tail risk estimation with the generalized Pareto distribution under the peaks-over-threshold framework[J]. Communications in Statistics, 2020, 49(4): 827-844.
[2]Zhao Jing, Wu Mixia,Cheng Weihu, et al. Tests for p-regression coefficients in linear panel model when p is divergent[J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36(3): 566-580.
[3]Hu Gouzhi,Cheng Weihu, Zeng Jie. Model averaging by jackknife criterion for varying-coefficient partially linear models[J]. Communication in Statistics Theory & Methods, 2020, 49(11), 2671-2689.
[4]Idriss Abdelmajid Idriss Ahmed,Cheng Weihu. The performance of robust methods in Logistic regression model[J]. Open Journal of Statistics, 2020, 10(1): 127-138.
[5]胡国治,程维虎,曾婕.协变量缺失下部分线性模型的模型选择和模型平均[J].应用数学学报, 2020, 43(3): 535-554.
[6]Zeng Jie,Cheng Weihu, Hu Gouzhi, et al. Model selection and model averaging for semiparametric partially linear models with missing data[J]. Communications in Statistics-Theory and Methods, 2019, 48(2): 381-395.
[7]Zhao Xu, Geng Xueyan,Cheng Weihu, et al. Statistical inference of the generalized Pareto distribution based on upper record values[J]. Statistics and its Interface, 2019, 12(4): 501 -510.
[8]Chen Haiqing,Cheng Weihu. Fitting type I generalized Logistic distribution by modified method based on percentiles[J]. Communication in Statistics-Simulation and Computation, 2019, 48(7): 2222–2227.
[9]Chen Haiqing,Cheng Weihu,Rong Yaohua, et al. Fitting the generalized Pareto distribution to data based on transformations of order statistics[J]. Journal of Applied Statistics, 2019, 46(3): 432-448.
[10]Chen Haiqing,Cheng Weihu, Jin Mingzhong. Parameter estimation for generalized Logistic distribution by estimating equations based on the order statistics[J]. Communications in Statistics-Theory and Methods, 2019, 48(6): 1506–1516.
[11]Zhao Xu,Cheng Weihu, Zhang Yang, et al. Confidence intervals of the generalized Pareto distribution parameters based on upper record values[J]. Acta Mathematicae Applicatae Sinica, 2019, 35(4):219-228.
[12]Zhao Xu, Zhang Zhongxian,Cheng Weihu, et al. A new parameter estimator for the generalized Pareto distribution under the peaks over threshold framework[J]. Mathematics 2019, 7(5), 406;https://doi.org/10.3390/math7050406.
[13]曾婕,程维虎,陈海清.缺失数据下部分线性变系数模型的模型平均[J].北京工业大学学报, 2019, 45(04): 405-412.
[14]Zhao, Jing,Cheng Weihu, Chen Haiqing, et al. Comparisons of several Pareto distributions based on record values[J]. Communications in Statistics: Theory and Methods, 2018, 47(10): 2456-2468.
[15]Zeng Jie,Cheng Weihu, Hu Guozhi, et al. Model selection and model averaging for semiparametric partially linear models with missing data[J]. Journal of the Korean Statistical Society, 2018, 47(3): 379–394.
[16]Rong Yaohua, Li Muyu,Cheng Weihu, et al. Efficiency, technology and productivity change of higher educational institutions directly under the ministry of education of China in 2007-2012. Procedia Computer Science, 2018, 139: 598-604.
[17]Rong Yaohua, Dave Zhao, Zhu Ji, Yun Wei,Cheng Weihu, and Li Yi. More accurate semiparametric regression in pharmacogenomics[J]. Statistics and Its Interface, 2018, 11(4): 573-580.
[18]卢丹丹,程维虎,梅树江,肖革新.时空统计在食源性疾病中的应用[J].数理统计与管理, 2018, 37(1): 25-35.
[19]Zhao Jing, Feng Sanying,Cheng Weihu. Estimation in partially linear time-varying coefficients panel data models with fixed effects[J]. Journal of the Korean Statistical Society, 2017, 46(2): 267-284.
[20]Chen Haiqing,Cheng Weihu, Zhao Jing, et al. Parameter estimation for generalized Pareto distribution by generalized probability weighted moment-equations[J]. Communications in Statistics, 2017, 46(10): 7761 -7776.
[21]Chen Haiqing,Cheng Weihu, Zhu Leilei, et al. Parameter estimation for three-parameter generalized Pareto distribution by weighted nonlinear least squares[J]. Communication in Statistics- Theory and Methods, 2017, 46(23): 11440-11449.
[22]韩雪,程维虎.基于矩和L矩的三参数Ⅰ型广义Logistic分布的参数估计[J].应用数学学报, 2017, 40(3): 331-344.
[23]荣耀华,程维虎.基于数据包络分析方法的上市银行盈利效率研究[J].数理统计与管理, 2017, 36(6): 1069-1079.
[24]韩雪,程维虎.三参数Ⅰ型广义Logistic分布参数的一类改进估计[J].数理统计与管理, 2016, 35(3): 445-455.
[25]杨宜平,程维虎,杨振海.一种新的聚类分析方法——自然聚类法[J].系统科学与数学, 2016, 36(5): 698-711.
[26]赵旭,陈立萍,程维虎. Logistic回归模型在人口问题中的应用[J].应用概率统计, 2015, 31(6): 662-666.
[27]戴家佳,程维虎,张忠占,杨振海.多个正态总体均值相等的VDR检验[J].中国科学:数学, 2014, 44(11): 1203-1224.
[28]赵静,程维虎,吴密霞,赵延. Panel数据模型中方差分量的广义p值检验[J].高校应用数学学报A辑, 2014, 29(2): 171-179.
[29]陈海清,程维虎.广义Pareto分布参数的最小二乘估计[J].应用概率统计, 2013, 29(02): 121-135.
[30]Yang Yiping, Xue Liugen andCheng Weihu. An empirical likelihood method in a partially linear single-index model with right censored data[J]. Acta Mathematica Sinica, English Series, 2012, 28(5): 1041-1060.
[31]Yang Yiping, Xue Liugen andCheng Weihu. Variable selection in the partially linear errors-in-variables models for longitudinal data[J]. Acta Mathematicae Applicatae Sinica, 2012, 28(4): 769-780.
[32]张香云,程维虎.二项-广义Pareto复合极值分布模型的统计推断[J].应用数学学报, 2012, 35(03): 560-572.
[33]杨宜平,薛留根,程维虎.删失数据下单指标模型的经验似然推断[J].数学物理学报, 2012, 32(2): 297-311.
[34]赵旭,程维虎,李婧兰.广义Pareto分布的广义有偏概率加权矩估计方法[J].应用数学学报, 2012, 35(2): 321-329.
[35]程维虎,戴家佳,杨振海,张国志.随机估计和VDR检验[J].数理统计与管理, 2012, 31(1): 32-54.
[36]赵旭,薛留根,李婧兰,程维虎.广义Pareto分布近似广义最小二乘估计[J].北京工业大学学报, 2012, 38(5): 789-792.
[37]Xue Dong, Xue Liugen andCheng Weihu. Empirical likelihood for generalized linear models with missing responses. Journal of Statistical Planning & Inference, 2011, 141(6): 2007-2020.
[38]Yang Yiping, Xue Liugen andCheng Weihu. Two-step estimators in partial linear models with missing response variables and error-prone covariates. J Syst Sci Complex. 2011, 24(6): 1165-1182
[39]Yang Yiping, Xue Liugen andCheng Weihu. The empirical likelihood goodness-of-fit test for a regression model with randomly censored data[J]. Communications in Statistics Theory & Methods, 2011, 40(3): 424-435.
[40]杨宜平,薛留根,程维虎.纵向数据下部分线性EV模型的变量选择[J].工程数学学报, 2011, 28(2): 211-219.
[41]Yang Yiping, Xue Liugen andCheng Weihu. Variable Selection for Partially Linear Models with Randomly Censored Data[J]. Communications in Statistics-Simulation and Computation, 2010, 39(8): 1577-1589.
[42]杨宜平,薛留根,程维虎.响应变量存在缺失时部分线性模型的经验似然推断[J].高校应用数学学报A辑, 2010, 25(1): 43-52.
[43]程维虎,杨振海.软件可靠性模型和估计[J].数理统计与管理, 2010, 29(1): 52-61.
[44]Yang Yiping, Xue Liugen andCheng Weihu. Empirical likelihood for a partially linear model with covariate data missing at random[J]. Journal of Statistical Planning & Inference, 2009, 139(12): 4143-4153.
[45]张国志,杨振海,程维虎.基于最小路径与最小割集的复杂系统可靠性的描述与计算[J].数理统计与管理, 2009, 28(5): 811-825.
[46]杨宜平,薛留根,程维虎.变系数单指标模型中参数的经验似然[J].应用数学, 2009, 22(2): 283-290.
[47]Cheng Weihu, Yang Zhenhai. Multivariate Logistic Distribution[J]. Advances in Systems Science and Applications, 2008, 8(3): 415-420.
[48]程维虎,陈立萍,王雪丽.药物剂量响应曲线核函数估计法[J].数理统计与管理, 2007, 26(4): 747-752.
[49]Chen Dong,Cheng Weihu. An asymptotically best linear unbiased estimator for Logistic population based on the selected order statistics[J]. Advances in Systems Science and Applications, 2006, 6(4): 661-666.
[50]杨振海,程维虎.非均匀随机数产生[J].数理统计与管理, 2006, 25(6): 750-756.
[51]程维虎,杨振海.舍选法几何解释及曲边梯形概率密度随机数生成算法[J].数理统计与管理, 2006, 25(4): 494-504.
[52]杨振海,程维虎.垂直密度表示及其应用[J].应用概率统计, 2006, 22(3): 329-336.
[53]杨振海,程维虎.统计模拟[J].数理统计与管理, 2006, 25(1): 117-126.
[54]陈冬,程维虎.利用样本分位数的Logistic总体分布参数的近似最佳线性无偏估计[J].应用数学学报, 2005(2): 325-332.
[55]程维虎,王莉丽.负二项分布两种参数估计及其比较[J].数理统计与管理, 2004, 23(5): 52-56.
[56]杨振海,程维虎.基于Logistic总体Ⅱ型截尾样本分布参数的近似极大似然估计[J].北京工业大学学报, 2004, 30(2): 235-240.
[57]程维虎.基于Logistic总体Ⅱ型截尾样本分布参数的极大似然估计[J].北京工业大学学报, 2004, 30(1): 114-119.
[58]程维虎.利用样本分位数的极值分布的参数估计[J].北京工业大学学报, 2002, 28(3): 326-328.
[59]陈冬,程维虎.利用样本分位数的Logistic分布参数的渐近置信估计[J].数理统计与管理, 2002, 21(2): 52-55.
[60]程维虎,陈冬. Logistic分布参数的渐近置信估计(Ⅰ)[J].北京工业大学学报, 2001, 27(2): 169-173.
[61]王莉丽,程维虎,杨振海.生物种群的一类统计模型[J].数理统计与管理, 2001, 20(2): 27-30.
[62]程维虎.拟合优度检验的回归分析方法及其应用[J].北京工业大学学报, 2000, 26(2): 79-84.
[63]来向荣,程维虎.复值独立同分布随机变量序列部分和的完全收敛性[J].北京工业大学学报, 2000, 26(3): 82-85.
[64]程维虎.极值分布变差系数及可靠度的置信区间[J].北京工业大学学报, 1999, 25(2): 25-30.
[65]张昱,程维虎,等.模式识别——优化迭代目标转换因子分析法同时测定硝基苯类化合物的研究[J].北京工业大学学报, 1999, 25(2): 13-18.
[66]程维虎,来向荣.关于多维正态分布的三个定理[J].数理统计与应用概率, 1998, 13(4): 79-82.
[67]刘礼宾,程维虎.阵地弹药贮存可靠性分析及试验数据处理[J].数理统计与应用概率, 1998, 13(4): 94-99.
[68]李新云,程维虎,等.模糊聚类——因子分析光度法同时测定工业废水中多组分酚[J].北京工业大学学报, 1997, 23(1):7-17.
[69]邹声柱,程维虎,杨振海.基于若干个样本分位点的参数估计方法[J].数理统计与应用概率, 1996, 11(4): 68-83.
[70]程维虎,胡京兴.可列马氏链的可逆性[J].数理统计与应用概率, 1996, 11(2): 139-142.
[71]程维虎,陈奇志,胡京兴.连续时间参数下马尔可夫过程的可逆性[J].数理统计与应用概率, 1995, 10(4): 31-34.
出版的著作:
[1]程维虎,赵旭,来向荣.概率论基础[M].科学出版社, 2018.
[2]王松桂,张忠占,程维虎,高旅端.概率论与数理统计(第三版)[M].科学出版社, 2011.
[3]杨振海,程维虎,张军舰.拟合优度检验[M].科学出版社, 2011.
[4]孙洪祥,程维虎,等.随机过程[M].机械工业出版社, 2007.
[5]杨爱军,谢琍,陈丽萍,程维虎.概率论与数理统计学习辅导[M].科学出版社, 2007.
[6]王松桂,程维虎,高旅端等.概率论与数理统计(第二版)[M].科学出版社, 2006.
[7]王松桂,程维虎,高旅端.概率论与数理统计(修订本)[M].科学出版社, 2004.
[8]程维虎,来向荣.随机过程讲义[M].北京工业大学出版社, 2001.
[9]来向荣,程维虎.简明概率论教程[M].北京工业大学出版社, 2001.
[10]王松桂,程维虎,高旅端等.概率论与数理统计(第一版)[M].科学出版社, 2000.
所获的荣誉:
1.“数学系列课程内容与课程体系建设改革的研究与实践”获北京市教育教学成果一等奖,2001.
2.《概率论与数理统计》获教育部全国普通高等学校优秀教材二等奖,2002.
3.“工科概率论与数理统计精品课程体系建设”获北京市教育教学成果奖一等奖,2005.
4.《概率论与数理统计》(第二版)获北京高等教育精品教材,2005.
5.“概率论与数理统计课程”获国家级精品课程奖,2005.
6.《概率论与数理统计》(第二版)入选全国普通高等教育“十一五”国家级规划教材,2006.
7.获北京市属市管高等学校人才强校计划2006年度中青年骨干教师,2006.
8.获北京北京工业大学优秀教学质量奖,2007.
9.获北京工业大学教学优秀奖,2008.
10.“概率论与数理统计课程建设与实践”获2008年北京工业大学优秀教育教学成果奖特等奖,2008.
11.“概率论与数理统计教学团队”入选北京市优秀教学团队,2008.
12.《概率论与数理统计》(第三版)入选全国普通高等教育“十二五”国家级规划教材,2011.
13.获北京工业大学教学名师奖, 2012.
14.获全国优秀科技工作者称号,2013.
15.获第十届北京市高等学校教学名师奖, 2014.
16.获第九届北京市高校青年教师教学基本功比赛(理工A组)优秀指导老师奖,2015.