代表性成果
·S. Su, H. Tang, A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes, Comput. Math. Appl., 108(2022)33-48.
·S. Su, H. Tang, J. Wu, Anefficientpositivity-preservingfinitevolumescheme for thenonequilibriumthree-temperatureradiationdiffusionequations onpolygonalmeshes, Commun. Comput. Phys., 30(2)(2021)448-485.
·Q. Dong, J. Wu, S. Su, Relationship between the vertex-centered linearity-preserving scheme and the lowest-order virtual element method for diffusion problems on star-shaped polygons, Comput. Math. Appl., 79(2020)3117-3138.
·Q. Dong, S. Su, J. Wu, Adecoupled andpositivity-preserving DDFVscheme fordiffusionproblems onpolyhedralmeshes, Commun. Comput. Phys., 27(5)(2020)1378-1412.
·Q. Dong, S. Su, J. Wu, Analysis of the decoupled and positivity-preserving DDFV schemes for diffusion problems on polygonal meshes, Adv.Comput.Math., 46(2020)12.
·S. Su, J. Wu, A vertex-centered and positivity-preserving finite volume scheme for two-dimensional three-temperature radiation diffusion equations on general polygonal meshes, Numer. Math. Theor. Meth. Appl., 13(1)(2020) 220-252.
·S. Su, Q. Dong, J. Wu, A vertex-centered and positivity-preserving scheme for anisotropic diffusion equations on general polyhedral meshes,Math.Meth.Appl.Sci.,42(1)(2019)59-84.
·S. Su, Q. Dong, J. Wu, A decoupled and positivity-preserving discrete duality finite volume scheme for anisotropic diffusion problems on general polygonal meshes, J. Comput. Phys., 372(2018)773-798.
·X. Zhang, S. Su, J. Wu, A vertex-centered and positivity-preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids, J. Comput. Phys., 344(2017)419-436.