基本情况
杨蓉
博士,北京工业大学应用数统力学院100124
Email:ysihan2010@bjut.edu.cn
通讯地址:北京工业大学数理楼
2006/09-2010/07,陕西师范大学,信息与计算科学系,本科
2010/08-2012/07,清华大学,数学科学系,硕士
2012/08-2015/07,清华大学,数学科学系,博士
2013/08-2014/08,杜克大学,数学系,联合培养博士生
2015/07-2022/03,北京工业大学,计算与应用数学系,讲师
2022/04-至今,北京工业大学,应用数学系,副教授
代表性论文
[1] R. Yang and L. Chen. Mean-field limit for a collision avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7: 381-400.
[2] J.-G. Liu and R. Yang. A random particle blob method for the Keller-Segel equation and convergence. Mathematics of Computation, 2017, 86(304): 725-745.
[3] J.-G. Liu and R. Yang. Propagation of chaos for large Brownian particle system with Coulomb interaction. Research in the Mathematical Sciences, 2016, 3(1): 40.
[4] J.-G. Liu and R. Yang, Propagation of chaos for the Keller-Segel equation with a logarithmic cut-off. Methods and Applications of Analysis, 2019, 26(4): 319-348.
[5] R. Yang, Well-Posedness of the Second-Order SDEs Describing an N-Particle System Interacting via Coulomb Interaction. Contemporary Mathematics, 2020.
[6] R. Yang and X.-G. Yang, Asymptotic stability of 3D Navier–Stokes equations with damping. Applied Mathematics Letters, 2021.
[7] L. Shen, S. Wang and R. Yang, Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model. Journal of Differential Equations, 2021, 272: 473-543.
[8] W.-J. Liu, R. Yang and X.-G. Yang, Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure and Applied Analysis, 2021, 20(5) : 1907-1930.
[9] R. Yang and H. Min, On the collisions of an N-particle system interacting via the Newtonian gravitational potential. Acta Applicandae Mathematicae, 2021, 172(7): 1-12.
[10] S.Wang,MengmengSi and R. Yang, Random attractors for non-autonomous stochastic Brinkman-Forchheimer equations on unbounded domains, Communications on Pure and Applied Analysis,2022,21( 5): 1621–1636.
[11] R. Yang, X. Kong and X.-G. Yang, Asymptotic stability for 3D Brinkman-Forchheimer equation with delay on some unbounded domains, Discrete and Continuous Dynamical Systems-Series B, 2023,28(7): 3997-4021 .
[12] X. Yan and R. Yang, Pullback trajectory attractor for nonautonomous wave equations, Communications in Nonlinear Science and Numerical Simulation, 2023, 119, 107-137.
[13] K. Su and R. Yang, Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory,Electronic Research Archive, 2023, 31(2): 928-946.