代表性成果与荣誉
论文
[1] Y. Hao, Q. Huang, and C. Wang, A third order BDF energy stable linear scheme for the no-slope-selection thin film model,Commun. Comput. Phys., 29 (2021), 905-929
[2] F. Xu,Q. Huang,M. Wang, and H. Ma, A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates,Applied Mathematics and Computation, 385 (2020), 125404
[3] F. Xu,Q. Huang, andH. Ma, A novel domain decomposition framework for the ground state solution of Bose-Einstein condensates,Computers & Mathematics with Applications, 80 (2020), 1287-1300
[4] F. Xu andQ. Huang,Cascadic adaptive finite element method for nonlinear eigenvalue problem based on complementary approach,J. Comput. Appl. Math., 372 (2020), 112720
[5] F. Xu andQ. Huang, Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems,J. Sci. Comput.,82 (2020), 20
[6] C. Yao, Y Wei, andQ. Huang*, Post-processing technique of two-grid algorithm for wave propagation with Debye polarization in nonlinear dielectric materials,Appl. Numer. Math., 157 (2020), 405-418
[7] K. Jiang,Q. Huang*, and X. Xu, Discontinuous Galerkin Methods for Multi-Pantograph Delay Differential Equations,Advances in Applied Mathematics and Mechanics, 12 (2020), 189-211
[8] F. Xu andQ. Huang, A type of cascadic multigrid method for coupled semilinear elliptic equations,Numerical Algorithms, 83 (2020), 485-510
[9] F. Xu andQ. Huang,S. Chen, and H. Ma, A Type of Cascadic Adaptive Finite Element Method for Eigenvalue Problem,Advances in Applied Mathematics and Mechanics, 12 (2020), 774-796
[10] F. Xu andQ. Huang*, An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications,Science China- Mathematics, 2019.10
[11] F. Xu,Q. Huang*, S. Chen and Tao Bing, An Adaptive Multigrid Method for Semilinear Elliptic Equations,East. Asia. J. Appl. Math., 9 (2019), 683-702
[12]Q. Huang, S. Jia., F. Xu., Z. Xu., and C. Yao., Solvability of wave propagation with Debye polarization in nonlinear dielectric materials and its finite element methods approximation,Appl. Numer. Math., 146 (2019), 145-164
[13] F. Xu andQ. Huang, An accurate a posteriori error estimator for semilinear Neumann problem and its applications,Applied Mathematics and Computation,362 (2019), 124540
[14] S. Chen andQ. Huang∗,A finite volume method for a coupled fracture model with matching and nonmatching grids,Appl. Numer. Math., 145 (2019), 28-47
[15]Q. Huang*, K. Jiang, and X. Xu, Postprocessing of Continuous Galerkin Solutions for Delay Differential Equations with Nonlinear vanishing Delay,Int. J. Numer. Anal. Modeling, 16 (2019), 718-730.
[16]X. Xu and Q. Huang*,Superconvergence of discontinuous Galerkin methods for nonlinear delay differential equations with vanishing delay,J. Comput. Appl. Math.,348 (2019), 314–327
[17]Q. Huang,D. Li, and J. Zhang, Numerical Investigations of a Class of Biological Models on Unbounded Domain,Numer. Math. Theor. Meth. Appl., 12 (2019), 154-168
[18]Q. Huang,X. Yang, and X. He,Numerical Approximations for a Smectic–a liquid Crystal Flow Model: First-order, Linear, Decoupled and Energy Stable Schemes,Discrete Cont. Dyn-B, 23 (2018), 2177-2192
[19] W. Cao and Q. Huang, Superconvergence of Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives,J. Sci. Comput., 72 (2017), 761-791.
[20] Q. Huang, X. Xu and H. Brunner, Continuous Galerkin Methods on Quasi- geometric Meshes for Delay Differential Equations of Pantograph Type,Discrete Cont. Dyn--A, 36 (2016), 5423-5443.
[21] X. Xu,Q. Huang* and H. Chen, Local Superconvergence of Continuous Galerkin Solutions for Delay Differential Equations of Pantograph Type,J. Comput. Math.,34 (2016), 186-199.
[22] 许秀秀,黄秋梅*,拟等级网格下非线性延迟微分方程间断有限元法,计算数学,38 (2016), 281-288
[23] 许秀秀,黄秋梅*,比例延迟微分方程的连续有限元法,数学的实践与认识,(44) 2014, 280-288
[24]Q. Huang, H. Xie, and H. Brunner. The hp Discontinuous Galerkin Method for Delay Differential Equations with Nonlinear Vanishing Delay.SIAM J. Sci. Comput.,35 (2013), A 1604–1620
[25]Q. Huang, H. Xie, and H. Brunner. Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type.SIAM J. Sci. Comput.,33 (2011), 2664–2684
[26] H. Brunner.,Q. Huang*, and H. Xie. Discontinuous Galerkin Methods for Delay Differential Equations of Pantograph Type.SIAM Journal on Numerical Analysis,48 (2010), 1944-1967
[27]Q. Huang,S. Zhang. Superconvergence of Interpolated Collocation Solutions for Hammerstein Equations.Numerical Methods for Partial Differential Equations, 26 (2010), 290-304
[28]Q. Huangand H. Xie, Superconvergence of the interpolated Galerkin solutions for Hammerstein equations,Int. J. Numer. Anal. Modeling, 6 (2009), 696-710
[29]Q. Huangand Y. Yang. A note on Richardson extrapolation of Galerkin methods for eigenvalue problems of Fredholm integral equations.J Comp Math,26 (2008), 598- 612
[30] 黄秋梅,杨一都,Fredholm积分方程特征值问题配置法外推的Matlab实验,数学的实践与认识,37 (2007), 163-168
[31] Y. Yang andQ. Huang, A posteriori error estimator for spectral approximations of completely continuous operators,Int. J. Numer. Anal. Modeling, 3 (2006), 361-370
所获荣誉:
2016年,贵州省科技进步二等奖(排名第三);
2014年,贵州省高校科研优秀成果二等奖(排名第三);
2013年,首届全国微课教学比赛北京市优秀奖;
2013年,北京工业大学青年教师基本功比赛二等奖、最佳教案奖、最佳教学演示奖。
入选人才计划:
入选“北京工业大学青年百人”培养计划,2016~2018;
入选“北京市科技新星”计划,2015~2017;
入选“北京市教委青年拔尖人才”培育计划,2015~2017;
入选“北京工业大学日新人才”培养计划,2013~2015。