王术

职称职务:教授,博士生导师

E-mail:wangshu@bjut.edu.cn

基本情况

姓名:王术

性别:男

职称:教授/博导

所在部门:数学统计学与力学学院/数学系

简介:王术,现为北京工业大学二级教授,博士生导师,数学一级学科博士点责任教授兼任数学系主任,数学统计学与力学学院学术委员会主任。2001年被评为中国科学院优秀博士后,2004年入选教育部新世纪优秀人才,2008年入选北京市学术创新人才(拔尖人才),2011年入选北京工业大学京华人才,2012年入选北京市长城学者,2016年获得国务院政府特殊津贴。曾为中国数学会理事(两届),现为中国工业与应用数学会理事、北京市数学会常务理事等。2012年独立获得北京市科学技术奖二等奖1项。曾任北京工业大学应用数理学院副院长/院长、北京工业大学校学术委员会委员/校学位委员会委员等职务。已在国际重要学术期刊,如SCI级杂志《Adv. Math》、《ARMA》、《Math. Ann.》、《SIAM J Math. Anal.》、《Communications PDE》、《J Diff. Eqns.》、《M3AS》、《J. Math. Phys.》等发表SCI收录学术论文200余篇。在科学出版社出版著作3部,一部为现代数学系列丛书。

主要研究方向

数学-应用数学-偏微分方程及其应用(流体动力学方程、流固耦合动力学模型、Kinetic理论与量子Schrodinger方程、反应扩散方程、半导体/等离子体/航空发动机等应用科学中的数学问题建模与分析等)

教育与工作经历

教育经历:1990年于河南大学数学系获学士学位;1993年于北京理工大学应用数学系读硕士研究生;1998年于南京大学获博士学位。

工作经历:曾在中科院数学与系统科学研究院数学研究所和奥地利维也纳大学数学系做博士后。曾在美国加州理工学院做高级访问学者,曾在法国克莱蒙费朗大学做访问教授,曾在香港、德国、美国、新加坡、日本、英国、加拿大等20余个国家做为期1-3个月的短期访问学者或学术交流。

主要科研项目

以下为近五年内主持的科研项目

国家自然科学基金面上项目,12171111,航空发动机中的非线性流固耦合偏微分方程的适定性理论及其应用,起止年月:2022/01-2025/12, 在研,主持

国家自然科学基金委员会,数学天元基金项目, 12426610, 两类流体力学耦合方程的适定性理论研究,2025-01-01 至 2025-12-31, 在研, 主持

国家自然科学基金重点项目,11831003,流体力学方程的数学理论, 2019/01 -2023/12,在研,主持

国家自然科学基金面上项目,11771031,多物理场耦合的可压流体动力学模型及其相关模型的适定性与渐近极限问题研究,2018/01-2021/12,已结题,主持

国家自然科学基金重点项目,11531010,瓦斯燃烧爆炸过程中自由界面形成与运动的建模与分析,2016/01—2020/12,已结题,参加

国家自然科学基金面上项目,11371042,“电磁流体动力学方程组的适定性与渐近机理问题研究”,2014.01-2017.12,已结题,主持

973计划项目,2011CB808000信息及相关领域若干重大需求的应用数学研究,2011/01-2015/12,首席科学家马志明院士,已结题,参加

代表性成果与荣誉

发表论文

[1](M.C.Hou,L.J.Liu,王术,L.D.Xu)Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier-Stokes equations with temperature-dependent transport coefficients,Mathematische Annalen,390(2024),3513-3566.SCI

[2](王术)Global well-posedness of a new class of initial-boundary value problem on incompressible MHD/MHD-Boussinesq equations.J. Differential Equations,363(2023), 465–490.SCI

[3](王术,S.Z. Zhang)The initial value problem for the equations of motion of fractional compressible viscous fluids.J. Differential Equations,377(2023), 369–417.SCI

[4](Y.H. Feng, X. Li, M. Mei,王术)Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems.J. Differential Equations,301(2021), 471–542.SCI

[5](Y.H. Feng, X. Li,王术)Stability of non-constant equilibrium solutions for compressible viscous and diffusive MHD equations with the Coulomb force.J. Dynam. Differential Equations,33(2021), no. 2, 985–1021.SCI

[6](L. Shen,王术,R.Yang)Existence of local strong solutions for the incompressible viscous and non-resistive MHD-structure interaction model.J. Differential Equations,272(2021), 473–543.SCI

[7](王术,L.M. Jiang, C.D. Liu)Quasi-neutral limit and the boundary layer problem of Planck-Nernst-Poisson-Navier-Stokes equations for electro-hydrodynamics.J. Differential Equations,267(2019), no. 6,3475–3523.SCI

[8](王术,B.Y. Wang,C. D. Liu,N. Wang)Boundary layer problem and viscosity-diffusion vanishing limit of the incompressible 2D/3D magnetohydrodynamic system with no-slip boundary conditions,Journal of Differential Equations,263(2017), 4723-4749. SCI

[9] (Thomas Y. Hou,Z. Lei, G. Luo,王术,C. Zhou) On finite time singularity and global regularity of an axisymmetric model for the 3D Euler equations,Arch. Rational Mech. Anal.,212(2014):683-706.SCI

[10](T. Y. Hou, Z. Q. Shi,王术)On singularity formation of a 3D model for incompressible Navier-Stokes equations.Advances in Math., 230(2012), 607-641.SCI

[11](T. Y. Hou, C. M. Li, Z. Q. Shi,王术, X. W. Yu)On singularity formation of a nonlinear nonlocal system.Arch. Rational Mech. Anal., 199(2011),117-144.SCI

[12](王术,K. Wang)The mixed layer problem and quasi-neutral limit of the drift-diffusion model for semiconductors,SIAM J Math. Anal.,44(2)(2012), 699-717.SCI

[13](王术, Y. H. Feng,X. Li)The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasma,SIAM J Math. Anal., 44(5) (2012), 3429–3457.SCI

[14](Y. Ueda,王术,S. Kawashima)Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler--Maxwell system,SIAM J Math. Anal.,44(3)(2012), 2002-2017.SCI

[15](Y. J. Peng,王术, Q. L. Gu)Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations,SIAM J Math. Anal.,43(2)(2011), 944-970.SCI

[16](Y. J. Peng,王术)Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations,SIAM J Math. Anal.,40(2)(2008), 540-565.SCI

[17](王术, Z. P. Xin,P. A. Markowich)Quasineutral limit of drift-diffusion models for semiconductors: general doping profile case,SIAM J Math. Anal.,37(6)(2006),1854-1889.SCI

[18](Y. J. Peng,王术)The convergence of Euler-Maxwell system to the incompressible Euler equation,Commun. in Partial Differential Equation,33(2008),349-376.SCI

[19](王术,S. Jiang)The convergence of Navier-Stokes-Poisson system to the incompressible Euler equation,Commun. in Partial Differential Equation,31(2006), 1-21. SCI

[20](王术)Quasineutral limit of Euler-Poisson system with and without viscosity,Commun. in Partial Differential Equations, 29(3&4)(2004), 419-456. SCI

[21](A. Jüngel,王术)Convergence of nonlinear Schrödinger-Poisson systems to the compressible Euler equations,Commun. in Partial Differential Equations,28(2003), 1005-1022. SCI

[22](Q.H.Shi, W.T.Li,王术)Kato-type estimates for NLS equation in a scalar field and unique solvability of NKGS system in energy space.J. Differential Equations,256(2014), no.10, 3440–3462.SCI

[23](Q. H. Shi,王术,Y. Li)Existence and uniqueness of energy solution to Klein–Gordon –Schrodinger equations,Journal of Differential Equations,252(2012), 168–180.SCI

[24](K. Wang,王术)Quasi-neutral limit to the drift-diffusion models for semiconductors with physical contact-insulating boundary conditions.Journal of Differential Equations,249(2010), 3291-3311.SCI

[25](L. Hsiao,王术)Quasineutral limit of a time-dependent drift-diffusion-Poisson models for PN junction semiconductor devices,Journal of Differential Equations,225(2006),411-439.SCI

[26](L. Hsiao,P. A. Markowich,王术)Asymptotic behavior of globally smooth solutions to the multidimensional isentropic hydrodynamic model for semiconductors,Journal of Differential Equations,192(2003), 111-133. SCI

[27](王术)Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions,Journal of Differential Equations,182(2002), 431-469. SCI

[28](王术,M. X. Wang,C. H. Xie)Quasi-linear parabolic systems with nonlinear boundary conditions,Journal of Differential Equations,166(2000), 251-265.SCI

[29](王术,T. Wang)Stability of planar rarefaction wave to the 3D bipolar Vlasov-Poisson-Boltzmann system.Math. Models Methods Appl. Sci.,30(2020), no. 1,23–104.SCI

[30](T. Luo,王术, Y.L.Wang)Initial layer and incompressible limit for Euler-Poisson equation in nonthermal plasma.Math. Models Methods Appl. Sci.,29(2019), no. 9,1733–1751.SCI

[31](Y. H. Feng,王术,S.Kawashima)Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system,Math. Models Methods Appl. Sci.24(2014),no. 14,2851–2884.SCI

[32](Q. C. Ju,王术)Quasi-neutral limit of the multidimensional drift-diffusion models for semiconductors,Math. Models Methods Appl. Sci. (M3AS),20(9)(2010),1649-1679.SCI

[33](王术)Quasineutral limit of multi-dimensional drift-diffusion model,Math. Models Methods Appl. Sci.(M3AS),16(2006),537-557. SCI

[34](C. Schmeiser,王术)Quasineutral limit of the drift diffusion models for semiconductors with the general initial data,Math. Models and Methods Appl. Sci.(M3AS),13(4)(2003), 463-470.SCI

[35](L. Hsiao,王术)Asymptotic behavior of global smooth solutions to the Full 1D hydrodynamic model for semiconductors,Math. Models Methods Appl. Sci.(M3AS),12(2002), 777-796. SCI

[36](王术,Y.X.Wang, J.T. Liu)Regularity criteria to the incompressible axisymmetric Boussinesq equations.Appl. Math. Lett.,112 (2021), 106800, 7 pp.76D99SCI

[37](王术)The viscosity vanishing limit and global well-posedness of the three-dimensional incompressible Navier-Stokes equations with smooth large initial data in spherical coordinates.Appl. Math. Lett.,103 (2020), 106195, 6 pp。SCI

[38](Q.H.Shi, W.T.Li,王术)Blowup results for the KGS system with higher order Yukawa coupling.J. Math. Phys.,56(2015),no. 10,101504, 18 pp.SCI

[39](Q. H. Shi,王术,Y. Li,C. Y. Wang)Well posedness for the nonlinear Klein-Gordon -Schrodinger equations with hetero-interactions.J. Math. Phys.,51(3)(2010), 032102. SCI

[40](J. W. Yang,王术)Convergence of the non-isentropic Euler-Maxwell equations to compressible Euler-Poisson equations.J. Math. Phys., 50(12)(2009), 123508, 15pp. SCI

[41](Q. C. Ju,Y. Li,王术)Rate of convergence from the Navier-Stokes-Poisson system to the incompressible Euler equations.J. Math. Phys.,50(1)(2009), 013533, 12 pp. SCI

[42](Q. C. Ju, F. C. Li,王术)Convergence of the Navier-Stokes-Poisson system to the incompressible Navier-Stokes equations,J. Math. Phys.,49(7) (2008), 073515, 8pp.SCI

出版著作:

[1]王术冯跃红,电磁流体动力学方程与奇异摄动理论,北京:科学出版社,2015年

[2]王术编著,数学文化与不等式-探究式学习导引,北京:科学出版社,2014年

[3]王术编著,Sobolev空间与偏微分方程引论,北京:科学出版社,2009年

获奖与荣誉

(1)王术,2016年,国务院政府特殊津贴获得者

(2)王术,2012年,“电磁流体动力学方程的若干问题研究”,北京市科学技术奖二等奖,独立

(3)王术,2012年,北京市“长城学者”

(4)王术,2011年,北京工业大学“京华人才”

(5)王术,2008年,北京市学术创新人才(拔尖人才)

(6)王术,2004年,教育部新世纪优秀人才

(7)王术,2001年,中国科学院优秀博士后

(8)范周田、王术等,2018年,北京市高等教育教学成果奖一等奖

(9)王术,2024,北京市朝阳区凤凰计划领军人才

指导研究生

2025年在读博士生8人,硕士生5人。已经培养毕业博士生和硕士生5人晋升教授(王长有、杨建伟、石启宏、吴忠林、徐自立)等

主讲课程

主讲本科生或研究生新生研讨课、数学物理方程、现代偏微分方程理论、偏微分方程、微分方程数值解、文献选讲、论文写作指导等课程。

联系方式

地址:北京市朝阳区平乐园100号北京工业大学数学统计学与力学学院,邮编:100124

办公房间:数理楼530

电话:010-67391604

E-mail:wangshu@bjut.edu.cn

学校地址:北京市朝阳区平乐园100号
邮政编码:100124

  • 北京工业大学
    研究生招生

  • 北京工业大学
    研究生教育

Copyright © 北京工业大学研究生院版权所有