王如志

职称职务:教授、博士生导师

E-mail:wrz@bjut.edu.cn

基本信息


王如志:北京工业大学材料科学与工程学院教授、博士生导师,材料科学与工程系副主任、新能源材料与技术研究所所长、特种MEMS传感器北京市工程研究中心副主任,纳米材料与技术专业负责人,材料物理化学教研室主任,获得了北京市科技新星、北京市青年拔尖人才及北京工业大学京华人才等人才计划称号。美国麻省理工学院访问学者、日本产业综合技术研究所特别研究员、香港中文大学研究助理及香港城市大学访问研究员等多家国际知名院所的留学访问经历。在新能源材料与技术、纳米半导体光电功能材料与器件及人工智能新材料与器件技术等研究领域上取得了一系列具有良好科学意义与应用价值的科研成果。所培养的1名博士曾获北京市优秀博士论文及全国优秀博士论文提名奖。已在EESAMJACSAFMCMJMCAPRBAPL等国际知名学术刊物上发表SCI收录论文180多篇,其中,以第一或通讯作者发表的SCI收录一、二区论文100余篇。出版专著1部,主编教材1本。申请国家发明专利100余项,其中第一发明人国家授权发明专利31项。主持了军科委基础加强计划重点基础研究项目课题、5项国家自然科学基金、北京市科技新星计划及北京市自然科学基金等科研项目20余项,作为子课题负责人或骨干参与国家重大专项、国家重点研发计划、国家自然科学基金重点基金等科研项目多项。由于在本研究领域的影响力,被邀担任了国家高层次人才计划评审专家、国家重点研发计划等国家及北京市的重要项目的会议评审专家、国际学术期刊Open Physics JournalAppl.Sci的编委、《有色金属工程》编委、中国材料研究会计算材料分会委员及RMPNCJACSAFMSmallJMCA等多家国际权威学术期刊专家审稿人。获得了首都前沿学术成果、北京市教学成果特等奖及国家教学成果二等奖等奖项。


主要研究兴趣

1)新能源材料设计、制备与器件应用;

2)新型半导体光电功能材料的设计、制备与器件应用;

3)人工智能新材料设计、制备及器件应用。

联系方式


E-mail:  wrz AT bjut.edu.cn

联系电话:(01067392445 (office)
实验室主页:http://qmlab.bjut.edu.cn




专著&教材出版

1. 王如志、严辉  纳米半导体场发射冷阴极理论与实验,科学出版社(2017.1

2. 王如志、刘维、刘立英 半导体材料,清华大学出版社(2019.12

第一或通讯作者代表学术论文

1. Electrical-gate-controlled giant tunneling magnetoresistance and its quasi-periodic oscillation in an interlaced magnetic-electric silicene superlattice, Nanoscale 15, 1860 (2023).

2. Broadband spectrally selective infrared radiation and its applications of a superstructure film of combined circular patches, J. Appl. Phys. 133, 243102 (2023).

3. Reducing radar cross section of flat metallic targets using checkerboard metasurface: Design, analysis, and realization, J. Appl. Phys. 134, 044902 (2023).

4. Optimizing the binding of the *OOH intermediate via axially coordinated Co-N5 motif for efficient electrocatalytic H2O2 production, Appl. Catal. B-Environ. 338, 123078 (2023).

5. Cobalt nanoparticles embedded in nitrogen-doped porous carbon derived the electrodeposited ZnCo-ZIF for high-performance ORR electrocatalysts, J. Electro. Chem. 928, 117041 (2023).

6. Electron structure effects of S-doped In2O3 flowers on NO2 sensitivity, Mater. Res. Bull. 165, 112293 (2023).

7. A low-cost digital coding metasurface applying modified 'crusades-like' cell topologies for broadband RCS reduction, J. Phys. D-Appl. Phys. 55, 485001 (2022).

8. Iridium single-atom catalyst coupled with lattice oxygen activated CoNiO2 for accelerating the oxygen evolution reaction, J. Mater. Chem. A 10, 25692 (2022).

9. Atomic-scale polar vortices in Na0.5Bi0.5TiO3 grains, Ceram. Int. 48, 11830 (2022).

10. A universal high-efficiency cooling structure for high-power integrated circuits, Appl. Therm. Eng. 215, 118849 (2022).

11. Interface enhancement effect of hierarchical In2S3/In2O3 nanoflower heterostructures on NO2 gas sensitivity, Appl. Surf. Sci. 584, 152669 (2022).

12. Atomic-scale polar vortices in Na0.5Bi0.5TiO3 grains, Ceram. Int. 48, 11830 (2022).

13. Substitutional doping effect of C3N anode material: A first principles calculations study, Appl. Surf. Sci. 571, 151330 (2022).

14. First-Principles Investigation into Hybrid Improper Ferroelectricity in Ruddlesden-Popper Perovskite Chalcogenides Sr3B2X7 (B = Ti, Zr, Hf; X = S, Se), J. Phys. Chem. C 125, 13971 (2021).

15. Zinc oxide nanonets with hierarchical crystalline nodes: High-performance ethanol sensors enhanced by grain boundaries, J. Alloy. Compd. 877, 160277 (2021).

16. GaOx@GaN Nanowire Arrays on Flexible Graphite Paper with Tunable Persistent Photoconductivity, ACS Appl. Mater. & Inter. 13, 41916 (2021).

17. Local spring effect in titanium-based layered oxides, Energy Environ. Sci. 13, 4371 (2020).

18. Surface state effect on gas sensitivity in nano-hierarchical tin oxide, Ceram. Int. 46, 26871 (2020).

19. B.-R. Wang, R.-Z. Wang, L.-Y. Liu et al., WO3 Nanosheet/W18O49 Nanowire Composites for NO2 Sensing, ACS Appl. Nano Mater. 3, 5473 (2020).

20. Structural Modulation of GaN Nanowires Grown in High-Density Plasma Environment, J. Phys. Chem. C 124, 6725 (2020).

21. Wrinkled-Surface-Induced Memristive Behavior of MoS(2)Wrapped GaN Nanowires, Adv. Electro. Mater., 2000571 (2020).

22. Photoluminescence Properties of GaN Nanowires Grown in a Gradient-Plasma Environment, J. Phys. Chem. C 124, 16002 (2020).

23. Metallic two-dimensional C3N allotropes with electron and ion channels for high-performance Li-ion battery anode materials, Appl. Surf. Sci. 518, 146254 (2020).

24. Coupling enhanced growth by nitrogen and hydrogen plasma of carbon nanotubes, Crystengcomm 21, 4653 (2019).

25. Enhancement mechanism of H2 sensing in metal-functionalized GaN nanowires, Appl. Surf. Sci. 486, 212 (2019).

26. C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries, J. Mater. Chem. A 7, 2106 (2019).

27. Trap effects on vacancy defect of C3N as anode material in Li-ion battery, Appl. Surf. Sci. 475, 102 (2019).

28. Direct Growth of GaN Nanowires by Ga and N2 without Catalysis, Crystal Growth & Design 19, 2687 (2019).

29. Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets, Appl. Surf. Sci. 439, 983 (2018).

30. Assembled graphene nanotubes decorated by hierarchical MoS 2 structures: Enhanced lithium storage and in situ TEM lithiation study, Energy Storage Materials 9, 188 (2017).

31. Modulation Effects of Hydrogen on Structure and Photoluminescence of GaN Nanowires Prepared by Plasma-Enhanced Chemical Vapor Deposition, J. Phys. Chem. C 121, 24804 (2017).

32. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes. Sci Rep 7, 43625, 43625 (2017).

33. Ultra-Low Threshold Field Emission from Amorphous Bn Nanofilms. J. Alloy. Compd. J. Alloy. Compd. 705, 734 (2017).

34. Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations. Acs Applied Materials & Interfaces 8, 25229 (2016).

35. Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates. Phys. Chem. Chem. Phys. 18, 974 (2016).

36. An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations. Phys. Chem. Chem. Phys. 18, 29239 (2016).

37. A low cost, green method to synthesize GaN nanowires. Sci Rep 5, 17692 (2015).

38. Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride. Phys. Chem. Chem. Phys. 17, 11692 (2015).

39. Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires. RSC Adv. 5, 75810 (2015).

40. Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6 (2), 1113 (2014).

41. Si Doping at GaN Inversion Domain Boundaries: an Interfacial Polar Field for Electrons and Holes Separation. J. Mater Chem. A, 2, 97442014.

42. Crystallization Effects of NanocrystallineGaN Films on Field Emission. J. Phys. Chem. C 117, 1518-1523 (2013).

43. 1From powder to nanowire: a simple and environmentally friendly strategy for optical and electrical GaN nanowire films. Crystengcomm 15, 1626-1634 (2013).

44. Wurtzite-type CuInSe2 for high-performance solar cell absorber: ab initio exploration of the new phase structure. J. Mater. Chem. 22, 21662-21666 (2012)

45. Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices. Appl. Phys. Lett. 101, 152404 (2012).

46. Order Structures of AlxGa1-xN Alloys: First-Principles Predictions. J. Phys. Chem. C 116, 1282-1285 (2012).

47. Enhanced Field Emission from GaN and AlN Mixed-Phase Nanostructured Film J. Phys. Chem. C 116 (2), 1780-1783 (2012).

48. Electron field emission enhanced by geometric and quantum effects from nanostructured AlGaN/GaN quantum wells. Appl. Phys. Lett. 98, 152110 (2011).

49. Strain-induced negative differential resistance in armchair-edge graphenenanoribbons. Appl. Phys. Lett. 98, 082108 (2011).

50. Field Emission Enhancement in Semiconductor Nanofilms by Engineering the Layer Thickness: First-Principles Calculations. J. Phys. Chem. C 114, 11584-11587 (2010).

51. Ultra-Low-Threshold Field Emission from Oriented Nanostructured GaN Films on Si Substrate. Appl. Phys. Lett. 96(9), 092101(2010).

52. Field emission enhancement by the quantum structure in an ultrathin multilayer planar cold cathode. Appl. Phys. Lett. 92(14), 142102 (3) (2008)

53. Spin transport in an asymmetrical magnetic superlattice. Phys. Rev. B 74(2), 024417 (5) (2006).

54. Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations. Phys. Rev. B 77(19), 195440 (5) (2008).

55. Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes. Phys. Rev. B. 763, 033402 (4) (2007).

56. Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes. Phys. Rev. B 2007, 75(4), 045425 (5) (2007).

57. Structural enhancement mechanism of field emission from multilayer semiconductor films. Phys. Rev. B, 72(12), 125310 (6) ( 2005).

58. Multipeak characteristics of field emission energy distribution from semiconductors. Phys. Rev. B, 7019),195305 (6) (2004)

59. Band Bending Mechanism for Field Emission in Wide Band Gap Semiconductors. Appl. Phys. Lett., 81(15), 27822784 (2002).


学校地址:北京市朝阳区平乐园100号
邮政编码:100124

  • 北京工业大学
    研究生招生

  • 北京工业大学
    研究生教育

Copyright © 北京工业大学研究生院版权所有