第一或通讯作者代表学术论文
1.Electrical-gate-controlled giant tunneling magnetoresistance and its quasi-periodic oscillation in an interlaced magnetic-electric silicene superlattice,Nanoscale15, 1860 (2023).
2.Broadband spectrally selective infrared radiation and its applications of a superstructure film of combined circular patches,J. Appl. Phys.133, 243102 (2023).
3.Reducing radar cross section of flat metallic targets using checkerboard metasurface: Design, analysis, and realization,J. Appl. Phys.134, 044902 (2023).
4.Optimizing the binding of the *OOH intermediate via axially coordinated Co-N5 motif for efficient electrocatalytic H2O2 production,Appl. Catal. B-Environ.338, 123078 (2023).
5.Cobalt nanoparticles embedded in nitrogen-doped porous carbon derived the electrodeposited ZnCo-ZIF for high-performance ORR electrocatalysts,J. Electro. Chem.928, 117041 (2023).
6.Electron structure effects of S-doped In2O3 flowers on NO2 sensitivity,Mater. Res. Bull.165, 112293 (2023).
7.A low-cost digital coding metasurface applying modified 'crusades-like' cell topologies for broadband RCS reduction,J. Phys. D-Appl. Phys.55, 485001 (2022).
8.Iridium single-atom catalyst coupled with lattice oxygen activated CoNiO2 for accelerating the oxygen evolution reaction,J. Mater. Chem. A10, 25692 (2022).
9.Atomic-scale polar vortices in Na0.5Bi0.5TiO3 grains,Ceram. Int.48, 11830 (2022).
10.A universal high-efficiency cooling structure for high-power integrated circuits,Appl. Therm. Eng.215, 118849 (2022).
11.Interface enhancement effect of hierarchical In2S3/In2O3 nanoflower heterostructures on NO2 gas sensitivity,Appl. Surf. Sci.584, 152669 (2022).
12.Atomic-scale polar vortices in Na0.5Bi0.5TiO3 grains,Ceram. Int.48, 11830 (2022).
13.Substitutional doping effect of C3N anode material: A first principles calculations study,Appl. Surf. Sci.571, 151330 (2022).
14.First-Principles Investigation into Hybrid Improper Ferroelectricity in Ruddlesden-Popper Perovskite Chalcogenides Sr3B2X7 (B = Ti, Zr, Hf; X = S, Se),J. Phys. Chem. C125, 13971 (2021).
15.Zinc oxide nanonets with hierarchical crystalline nodes: High-performance ethanol sensors enhanced by grain boundaries,J. Alloy. Compd.877, 160277 (2021).
16.GaOx@GaN Nanowire Arrays on Flexible Graphite Paper with Tunable Persistent Photoconductivity,ACS Appl. Mater. & Inter.13, 41916 (2021).
17.Local spring effect in titanium-based layered oxides,Energy Environ. Sci.13, 4371 (2020).
18.Surface state effect on gas sensitivity in nano-hierarchical tin oxide,Ceram. Int.46, 26871 (2020).
19.B.-R. Wang, R.-Z. Wang, L.-Y. Liu et al., WO3 Nanosheet/W18O49 Nanowire Composites for NO2 Sensing,ACS Appl. Nano Mater. 3, 5473 (2020).
20.Structural Modulation of GaN Nanowires Grown in High-Density Plasma Environment,J. Phys. Chem. C124, 6725 (2020).
21.Wrinkled-Surface-Induced Memristive Behavior of MoS(2)Wrapped GaN Nanowires,Adv. Electro. Mater., 2000571 (2020).
22.Photoluminescence Properties of GaN Nanowires Grown in a Gradient-Plasma Environment,J. Phys. Chem. C124, 16002 (2020).
23.Metallic two-dimensional C3N allotropes with electron and ion channels for high-performance Li-ion battery anode materials,Appl. Surf. Sci. 518, 146254 (2020).
24.Coupling enhanced growth by nitrogen and hydrogen plasma of carbon nanotubes,Crystengcomm21, 4653 (2019).
25.Enhancement mechanism of H2 sensing in metal-functionalized GaN nanowires,Appl. Surf. Sci.486, 212 (2019).
26.C3N/phosphorene heterostructure: a promising anode material in lithium-ion batteries,J. Mater. Chem. A7, 2106 (2019).
27.Trap effects on vacancy defect of C3N as anode material in Li-ion battery,Appl. Surf. Sci.475, 102 (2019).
28.Direct Growth of GaN Nanowires by Ga and N2 without Catalysis,Crystal Growth & Design19, 2687 (2019).
29.Oxygen vacancy effect on photoluminescence of KNb3O8 nanosheets,Appl. Surf. Sci.439, 983 (2018).
30.Assembled graphene nanotubes decorated by hierarchical MoS 2 structures: Enhanced lithium storage and in situ TEM lithiation study,Energy Storage Materials9, 188 (2017).
31.Modulation Effects of Hydrogen on Structure and Photoluminescence of GaN Nanowires Prepared by Plasma-Enhanced Chemical Vapor Deposition,J. Phys. Chem. C121, 24804 (2017).
32.Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes.Sci Rep7, 43625, 43625 (2017).
33.Ultra-Low Threshold Field Emission from Amorphous Bn Nanofilms.J. Alloy. Compd.J. Alloy. Compd.705, 734 (2017).
34.Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations.Acs Applied Materials & Interfaces8, 25229 (2016).
35.Engineering of hydrogenated two-dimensional h-BN/C superlattices as electrostatic substrates.Phys. Chem. Chem. Phys.18, 974 (2016).
36.An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations.Phys. Chem. Chem. Phys.18, 29239 (2016).
37.A low cost, green method to synthesize GaN nanowires.Sci Rep5, 17692 (2015).
38.Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.Phys. Chem. Chem. Phys.17, 11692 (2015).
39.Self-templating noncatalyzed synthesis of monolithic boron nitride nanowires.RSC Adv.5, 75810 (2015).
40.Two dimensional Dirac carbon allotropes from graphene,Nanoscale6 (2), 1113 (2014).
41.Si Doping at GaN Inversion Domain Boundaries: an Interfacial Polar Field for Electrons and Holes Separation.J. Mater Chem. A, 2, 9744(2014).
42.Crystallization Effects of NanocrystallineGaN Films on Field Emission.J. Phys. Chem. C117, 1518-1523 (2013).
43.1From powder to nanowire: a simple and environmentally friendly strategy for optical and electrical GaN nanowire films.Crystengcomm15, 1626-1634 (2013).
44.Wurtzite-type CuInSe2 for high-performance solar cell absorber: ab initio exploration of the new phase structure.J. Mater. Chem.22, 21662-21666 (2012)
45.Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices.Appl. Phys. Lett.101, 152404 (2012).
46.Order Structures of AlxGa1-xN Alloys: First-Principles Predictions.J. Phys. Chem. C116, 1282-1285 (2012).
47.Enhanced Field Emission from GaN and AlN Mixed-Phase Nanostructured FilmJ. Phys. Chem. C116 (2), 1780-1783 (2012).
48.Electron field emission enhanced by geometric and quantum effects from nanostructured AlGaN/GaN quantum wells.Appl. Phys. Lett.98, 152110 (2011).
49.Strain-induced negative differential resistance in armchair-edge graphenenanoribbons.Appl. Phys. Lett.98, 082108 (2011).
50.Field Emission Enhancement in Semiconductor Nanofilms by Engineering the Layer Thickness: First-Principles Calculations.J. Phys. Chem. C114, 11584-11587 (2010).
51.Ultra-Low-Threshold Field Emission from Oriented Nanostructured GaN Films on Si Substrate.Appl. Phys. Lett.96(9), 092101(2010).
52.Field emission enhancement by the quantum structure in an ultrathin multilayer planar cold cathode.Appl. Phys. Lett.92(14), 142102 (3) (2008)
53.Spin transport in an asymmetrical magnetic superlattice.Phys. Rev. B74(2), 024417 (5) (2006).
54.Strain-induced Raman-mode shift in single-wall carbon nanotubes: Calculation of force constants from molecular-dynamics simulations.Phys. Rev. B77(19), 195440 (5) (2008).
55.Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes.Phys. Rev. B.76(3), 033402 (4) (2007).
56.Pressure-induced Raman-active radial breathing mode transition in single-wall carbon nanotubes.Phys. Rev. B2007, 75(4), 045425 (5) (2007).
57.Structural enhancement mechanism of field emission from multilayer semiconductor films.Phys. Rev. B, 72(12), 125310 (6) ( 2005).
58.Multipeak characteristics of field emission energy distribution from semiconductors.Phys. Rev. B,70(19),195305 (6) (2004)
59.Band Bending Mechanism for Field Emission in Wide Band Gap Semiconductors.Appl. Phys. Lett.,81(15), 2782~2784 (2002).