刘赵淼

职称职务:教授,博士生导师

E-mail:lzm@bjut.edu.cn

基本情况

刘赵淼,博士,教授,博士生导师,北京市高等学校教学名师,现任北京工业大学教务处处长、招生办公室主任。中国力学学会流体力学专业委员会委员兼微纳尺度流动专业组副组长,北京力学会流体力学专业委员会委员。

1992年7月毕业于吉林大学应用力学专业,获学士学位。1995年7月毕业于吉林大学计算力学专业,获硕士学位。1998年7月毕业于北京理工大学机电工程系军事化学与烟火技术专业,获工学博士学位。

曾获得教育部“国家留学基金”资助,于2004.9—2005.9在英国利兹大学机械工程学院做访问学者,2006年入选北京市留学回国人员择优资助计划。先后获得北京市“科技新星”、北京市中青年骨干教师和中国力学学会徐芝纶力学优秀教师、中国“互联网+”大学生创新创业大赛优秀创新创业导师、“挑战杯”全国大学生课外学术科技作品竞赛优秀指导教师和北京工业大学优秀教育工作者等荣誉称号。多次获得北京工业大学优秀教育工作者和德育标兵称号。

主讲《工程力学》、《流体力学》和《计算流体力学》等多门课程,所在团队获“国家级教学团队”,个人获得北京市优质本科课程主讲教师和北京市课程思政示范课程优秀主讲教师称号,获得北京市高等教育教学成果奖一等奖1项和多项学校教育教学成果奖特等奖、一等奖,指导的研究生多次获得北京市优秀毕业生、北京工业大学优秀毕业生、北京工业大学优秀博士/硕士学位论文、科技之星、校长奖学金、国家研究生奖学金、研究生创新奖学金。

主持多项国家自然科学基金项目、国家“973”计划子项目、国家科技重大专项子课题、教育部高校博士点基金、装备预研领域基金、北京市教委科技计划重点项目、北京市自然科学基金项目、航空基金项目等国家和省部级项目,在Physics of Fluids、Experiments in Fluids、Journal of Multiphase Flow、Soft Matter、Journal of Industrial and Engineering Chemistry、Chemical Engineering Science、Microfludics and Nanofludics、RSC Advance、Acta Mechanica Sinica、力学学报、机械工程学报等领域内重要期刊发表论文160余篇,授权国家发明专利60余项,软件著作权20余项。

研究方向

微尺度流体力学、液滴及界面动力学、实验流体力学、心血管血流动力学、流固耦合理论及其工程应用。

代表性论文及专利

期刊论文

1.Pang Y*, Jiao S J, Lu Y, Yang Q S, Wang X, Liu Z M*. Asymmetric branch selection and splitting of droplets in T-junction microchannels[J]. Physics of Fluids, 2023, 35(7): 072013.

2.Zhao S Y, Liu Z M*, Ren Y L, Zheng N, Chen R, Cai F M, Pang Y*. Study of micro-scale flow characteristics under surface acoustic waves, Physics of Fluids, 2023, 35(8): 082011.

3.Liu Z M*, Wang Z C, Pang Y*, Su P, Wang X*. Adjustable behaviors and dynamic mechanisms of droplets in the cross junction[J]. Physics of Fluids, 2023, 35(11): 112009.

4.Wang X*, Ma Y L, Zhang C C, Pang Y, Liu Z M*. Flow patterns and dynamic mechanisms of immiscible fluids in cross junctions with different aspect ratios[J]. Experimental Thermal and Fluid Science, 2023, 149: 111019.

5.Liu Z M, Su P, Pang Y, Liu W C, Wang Z C, Wang X*. Dynamic mechanism of double emulsion droplets flowing through a microfluidic T-junction[J]. Physics of Fluids, 2023, 35(7): 072001. (Editor’s Pick).

6.Zheng N, Liu Z M*, Cai F M, Zhao S Y, Ren Y L, Pang Y. The morphology regulation mechanism of microdroplet printing based on heterogeneous wettability surfaces[J]. International Journal of Heat and Mass Transfer, 2024, 219: 124830.

7.Zheng N, Liu Z M∗, Pang Y, Cai F M, Zhao S Y. Study on flow and heat transfer characteristics of 3D molten aluminum droplet printing process[J]. International Journal of Heat and Mass Transfer, 2023, 204: 123863.

8.Cai F M, Liu Z M*, Zheng N, Ren Y L, Pang Y. Lattice Boltzmann simulation of the effects of cavity structures and heater thermal conductivity on nucleate boiling heat transfer[J]. Appl. Math. Mech. -Engl. Ed., 2023, 44(6): 981–996.

9.Cai F M, Liu Z M*, Zheng N, Pang Y. Enhanced boiling heat transfer using conducting–insulating microcavity surfaces in an electric field: A lattice Boltzmann study[J]. Physics of Fluids, 2023, 35(10): 107126.

10.Cai F M, Liu Z M*, Zheng N, Ren Y L, Pang Y. Mesoscopic numerical study of the startup characteristics of grooved heat pipe under high heat flux[J]. Physics of Fluids, 2023, 35(7): 077106.

11.Liu Z M, Chen R, Tang Z Q, Tian Q, Fang Y C, Li P J, Li L, Pang Y*. Drag Reduction Performance of Triangular (V-groove) Riblets with Different Adjacent Height Ratios. Journal of Applied Fluid Mechanics, 2023, 16(4): 073325.

12.Li M Q, Theofilos Boulafentis, Antonios Stathoulopoulos, Liu Z M*, Stavroula Balabani*. Flows inside polymer microfluidic droplets: Role of elasticity[J]. Chemical Engineering Science, 2023, 278: 118887.

13.Ren Y L, Liu Z M*, Gao S S, Pang Y. Investigation of the molten droplet deposition offset based on the simple-component pseudopotential model. Physics of Fluids, 2023, 35(6): 063326.

14.Liu Z M, Shi K, Cai F M, Ren Y L*. Numerical investigation of mixing efficiency in Janus micro-mixer using lattice Boltzmann method. Physics of Fluids, 2023, 35(7): 073301.

15.Shen F*, Gao J, Ai M Z, Li Z H, Liu Z M*. Mechanism of particle dualorbital motion in a laminar microvortex. Physics of Fluids, 2023, 35(7): 073325.

16.Pang Y*, Li L, Ru J H, Zhou Q, Wang X, Liu Z M*.Interface coupling and droplet size under various flow-focusing geometry dimensions in double emulsion formation. Physics of Fluids, 2023, 35: 122016.

17.Shen F, Zhu L, Ji D R, Zhao S Y, Liu Z M*. Dynamic evolution of oil–water interface during displacement in microcavities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130698.

18.Shen F, Zhu L, Chen J, Liu Z M*. Water filling of microcavities[J]. Biomicrofluidics, 2022, 16(4): 044108.

19.Pang Y, Lu Y, Zhou Q, Wang X, Wang J, Li M Q, Liu Z M*. Breakup dynamics of emulsion droplet and effects of inner interface[J]. Journal of Food Engineering, 2022, 330: 111088.

20.Gao S S, Liu Z M*, Wang X, Pang Y, Ren Y L, Zhao S Y, Zheng N, Cai F M. Stabilization formation characterization of metal single droplet by pneumatic drop-on-demand[J]. Physics of Fluids, 2022, 34(12): 122010.

21.Pang Y, Yang Q S, Wang X, Liu Z M*. Dripping and jetting generation mode in T-junction microchannels with contractive structures[J]. Physics of Fluids, 2022, 34(9): 092001.

22.Zhao S Y, Liu Z M*, Wang J, Pang Y, Xue S, Li M Q. Formation of high-viscosity micro-droplets in T-channels with neck structure induced by surface acoustic waves[J]. Physics of Fluids, 2022, 34(11): 112012.

23.Liu Z M*, Cai F M, Pang Y, Ren Y L, Zheng N, Chen R, Zhao S Y. Enhanced droplet formation in a T-junction microchannel using electric field: A lattice Boltzmann study[J]. Physics of Fluids, 2022, 34(8): 082006.

24.Wang X, Li D Z, Pang Y, Liu Z M*. Pinch-off dynamics of double-emulsion droplets with/without the influence of interfacial coupling effect[J]. Physics of Fluids, 2022, 34(10): 102003.

25.Liu Z M, Liu W C, Pang Y, Li D Z, Zhang C C, Wang X*. Experimental study on dynamics of double emulsion droplets flowing through the Y-shaped bifurcation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130141.

26.Liu Z M, Ma Y L, Wang X*, Pang Y, Ren Y L, Li D Z. Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels[J]. Experimental Thermal and Fluid Science, 2022, 139: 110739.

27.Wang X, Pang Y, Ma Y L, Ren Y L, Liu Z M*. Thinning dynamics of the liquid thread at different stages in a rectangular cross junction[J]. AIChE Journal, 2022: e17700.

28.Liu Z M, Zhang C C, Zhao S Y, Pang Y, Wang X*. Breakup dynamics and scaling laws of liquid metal droplets formed in a cross junction[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 361-370.

29.Liu Z M, Zhang C C, Pang Y, Liu W C, Wang X*. Dynamics of droplet breakup in unilateral Y-junctions with different angles[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 46-57.

30.Shen F, Ai M Z, Zhao S Y, Yan C J, Liu Z M*. Transient flow patterns of start-up flow in round microcavities[J]. Microfluidics and Nanofluidics, 2022, 26(8): 1-11.

31.Wang J, Liu Z M*, Pang Y, Li M Q. Perturbations of liquid jets with an entering sphere in flow focusing[J]. International Journal of Multiphase Flow, 2022, 147: 103914.

32.Pang Y, Lu Y, Wang X, Liu Z M*. Droplet behavior and its effects on flow characteristics in T-junction microchannels[J]. Physics of Fluids, 2021, 33(6): 062013.

33.Pang Y, Lu Y, Wang X, Zhou Q, Ren Y L, Liu Z M*. Impact of flow feedback on bubble generation in T-junction microchannels under pressure-driven condition[J]. Chemical Engineering Science, 2021, 246: 117010.

34.Liu Z M, Li D Z, Wang X*, et al. Breakup regimes of double emulsion droplets in a microfluidic Y-junction[J]. Physics of Fluids, 2021, 33(10): 102009.

35.Ren Y L, Liu Z M*, Pang Y, Wang X, Xu Y D. Lattice Boltzmann simulation of phase change and heat transfer[J]. Applied Mathematics And Mechanics-English Edition, 2021, 42(4): 553-566.

36.Ren Y L, Liu Z M*, Pang Y, Wang X, Xu Y D. Investigation of dimensional accuracy of metal droplet deposition under repulsion using a lattice Boltzmann approach[J]. Rapid Prototyping Journal, 2021, 27(5): 1020-1029.

37.Li M Q, Liu Z M*, Pang Y, et al. Flow characteristics inside shear thinning xanthan gum non-Newtonian droplets moving in rectangular microchannels[J]. Experiments in Fluids, 2021, 62(10): 1-11.

38.Li M Q, Liu Z M*, Pang Y, et al. An investigation of droplet mobility and the ultra-mild internal mechanical microenvironment in cylindrical microchannels[J]. Physics of Fluids, 2021, 33(10): 102005.

39.Wang J, Liu Z M*, Pang Y , Li M Q, Zhou Q. Breakup of compound jets with inner droplets in a capillary flow-focusing device[J]. Physics of Fluids, 2021, 33(1): 013304.

40.Wang X, Pang Y, Ma Y L, Liu Z M*. Flow regimes of the immiscible liquids within a rectangular microchannel[J]. Acta Mechanica Sinica, 2021:1.

41.Liu Z M, Zhao S Y, Zhao S, Yin S, Xu Y L, Pang Y*. Study on Flow Characteristics and Influencing Factors in Square Wave Micromixer. Chinese Journal Of Analytical Chemistry. 2021, 49(10): 1666-1677.

42.Shen F, Ai M Z, Li Z H, Lu X R, Pang Y, Liu Z M*. Pressure measurement methods in microchannels: advances and applications. Microfluidics and Nanofluidics, 2021(25):39.

43.Shen F, Li Z H, Ai M Z, Gao H K, Liu Z M*. Round cavity-based vortex sorting of particles with enhanced holding capacity[J]. Physics of Fluids, 2021, 33(8): 082002.

44.Liu Z M*, Wang J, Pang Y, Zhou Q, Li M Q. Role of periodic inner dripping on compound jets in a capillary device[J]. International Journal of Multiphase Flow, 2020, 123: 103180.

45.Shen F, Yan C J, Li M Q, Liu Z M*. Experimental study of transient behaviors of start-up flow in long microcavities, Chemical Engineering Science (2020), https://doi.org/10.1016/j.ces.2020.115591

46.Pang Y, Du Y, Wang J, Liu Z M*. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 111:199-207.

47.Wang X, Liu Z M*, Pang Y. Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations[J]. Chemical Engineering Science, 2019, 197: 258-268.

48.Wang X, Liu Z M*, Pang Y. Collision characteristics of droplet pairs with the presence of arriving distance differences[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 225-232.

49.Shen F*, Xue S, Xu M, Pang Y, Liu Z M*. Experimental study of single-particle trapping mechanisms into microcavities using microfluidics [J]. Physics of fluids, 2019.(Doi:10.1063/1.5081918)

50.Liu Z M*, Li M Q, Pang Y, Zhang L X, Ren Y L, Wang J.Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019.

51.Liu Z M*, Zhao S, Wang W, Li M, Pang Y, Yin C, Xu Y. Influence of Geometric Configuration on Mixing Performance of Planar Chaotic Micro-mixer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1321-1329.

52.Liu Z M*, Zhao S W, Shen F, Qi Y P, Wang Q. Influence of coronary bifurcation angle on atherosclerosis[J]. Acta Mechanica Sinica, 2019, 35(6): 1269-1278.

53.Liu Z M*, Du Y, Pang Y. Generation of Water-In-Oil-In-Water (W/O/W) Double Emulsions by Microfluidics[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3):324-330.

54.Zhang L X, Liu Z M*, Pang Y, Wang X, Li M Q, Ren Y L. Trapping a moving droplet train by bubble guidance in microfluidic networks[J]. RSC Advances, 2018, 8(16):8787-8794.

55.Liu Z M*, Zhao J, Pang Y, Wang X. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11).

56.Wang X, Liu Z M*, Pang Y. Droplet breakup in an asymmetric bifurcation with two angled branches[J]. Chemical Engineering Science, 2018:S000925091830294X.

57.Liu Z M*, Zhang L X, Pang Y, Wang X, Li M Q. Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(12):180.

58.Liu Z M*, Yang Y, Du Y, Pang Y. Advances in Droplet-Based Microfluidic Technology and Its Applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2):282-296.

59.Wang X, Liu Z M*, Pang Y. Concentration gradient generation methods based on microfluidic systems[J]. RSC Adv. 2017, 7(48):29966-29984.

60.Shen F, Li Y, Liu Z M*. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement[J]. Microfluidics and Nanofluidics, 2017, 21(4):66.

61.Shen F, Xu M, Wang Z, Liu Z M*. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics[J]. Applied Physics Express, 2017, 10(9):097301.

62.Liu Z M*, Wang X, Cao R T, Pang Y. Droplets coalescence at microchannel intersection chambers with different shapes[J]. Soft Matter, 2016, 12(26):5797.

63.Pang Y, Liu Z M*, Zhao F W. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel[J]. Acta Mechanica Sinica, 2016, 32(4):579-587.

64.Feng S, Li Y, Liu Z M*. Advances in Micro-Droplets Coalescence Using Microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):1942-1954.

65.Liu Z M*, Pang Y. Effect of the size and pressure on the modified viscosity of water in microchannels[J]. Acta Mechanica Sinica, 2015, 31(1):45-52.

66.Liu Z M*, Cao R T, Pang Y, Shen F. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2):24.

67.Liu Z M*, Liu L K, Shen F. Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels[J]. Acta Mechanica Sinica, 2015, 31(5):741-749.

68.Shen F, Xiao P, Liu Z M*. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417.

69.Pang Y, Kim H, Liu Z M*, Stone H*. A soft microchannel decreases polydispersity of droplet generation[J]. Lab Chip, 2014, 14(20):4029-4034.

70.任彦霖,刘赵淼,逄燕,王翔.基于LBM的铝微滴斜柱沉积水平偏移研究[J].力学学报, 2021, 53(06): 1599-1608.

71.刘赵淼,李泽轩,林家源,逄燕.压力条件对旋流槽数不同的离心式喷嘴液膜破碎及雾化的影响研究[J].机械工程学报, 2021, 57(04): 247-256.

72.刘赵淼,王凯峰,王治林, et al.阶梯型加速段对旋流喷嘴雾化特性的影响[J].力学学报, 2018, v.50(03):126-134.

73.刘赵淼,王文凯,逄燕.扩展腔对方波型微混合器混合性能的影响研究[J].力学学报, 2018, 50(02):254-262.

74.刘赵淼,杨洋.几何构型对流动聚焦生成微液滴的影响[J].力学学报, 2016, 48(4):867-876.

75.刘赵淼,刘佳,申峰.不同重力下90°弯管内气液两相流流型及流动特性研究[J].力学学报, 2015, 47(2):223-230.

76.刘赵淼,赵婷婷,申峰.重力和接触角对表面张力贮箱内液体流动的影响[J].力学学报, 2015, 47(3):430-440.

77.刘赵淼,南斯琦,史艺.中等严重程度冠状动脉病变模型的血流动力学参数分析[J].力学学报, 2016, 47(06):1058-1064.

78.刘赵淼,李锦辉,申峰.收敛楔中黏塑性流体动力润滑性能及边界滑移行为[J].机械工程学报, 2014, 50(9):91-99.

79.刘赵淼,刘丽昆,申峰. Y型微通道中两相界面特性变化分析[J].机械工程学报, 2014, 50(8):189-196.

80.刘赵淼,刘丽昆,申峰. Y型微通道两相流内部流动特性[J].力学学报, 2013, 46(2):209-216.

81.刘赵淼,徐迎丽,申峰.亚声速条件下外形参数对逆流矢量喷管性能影响的模拟研究[J].推进技术, 2014, 35(3):305-313.

【授权发明专利】

1.申峰,薛森,刘赵淼,徐旻.一种可实现正面侧面同时观测的微流控芯片及制备方法, 2018.8.14,中国, ZL201810138013.3

2.刘赵淼,林家源,王凯峰.一种双油路离心式喷嘴, 2018.5.29,中国, ZL 201711358675.3

3.刘赵淼,王翔,逄燕.基于对准结构的固定角度多层微流控芯片制作方法, 2018.3.16,中国, ZL201711139878.3

4.刘赵淼,王翔,逄燕.不同交汇角度的多层微流控芯片的制作方法, 2018.3.16,中国, ZL201711140850.1

5.刘赵淼,王飓,逄燕,李梦麒.基于附加流量实现双乳液滴非对称分裂的微流控芯片, 2018.3.6,中国, ZL201711011350.8

6.申峰,薛森,刘赵淼,李梦麒.一种用于微流控芯片PDMS材料的打孔装置, 2017.11.7,中国, ZL201710665704.4

7.申峰,肖加锋,刘赵淼.一种承载面可运动的油腔观测装置, 2017.12.1,中国, ZL201710665705.9

8.刘赵淼,王翔,逄燕.一种气相辅助的金属微液滴制造装置及方法, 2017.9.5中国, ZL201710536538.8

9.申峰,薛森,刘赵淼.一种用于微凹槽滑动减阻PIV实验中圆盘式实验装置, 2017.6.27中国, ZL201710226519.5

10.刘赵淼,董林浩.一种加入扰流元件的微通道换热器, 2017.5.24中国, ZL201710048017.8

11.刘赵淼,王翔,逄燕.一种利用蜡笔手绘的纸芯片制作方法, 2017.5.10,中国, ZL201610889294.7

12.刘赵淼,王凯峰,王治林.一种可用于喷嘴雾化特性PDA实验的喷嘴夹持控制装置, 2017.3.22,中国, ZL201611117694.2

13.刘赵淼,王翔,逄燕.通道上下两壁面指定位置可变形的微流控芯片, 2017.2.15,中国, ZL201610836147.3

14.刘赵淼,王翔,逄燕.一种测量壁面可变形通道中压力变化的微流控芯片, 2017.2.1,中国, ZL201610757833.1

15.刘赵淼,张龙祥.一种双支路实现微液滴两次分裂功能的微通道2016.12.14,中国, ZL201610693312.4

16.刘赵淼,王治林,赵福旺.一种可用于喷嘴雾化特性PDA实验的喷雾防护罩, 2016.5.11,中国, ZL201610056574.X

17.刘赵淼,赵福旺,申峰,尉舰巍.一种基于脉动流的震荡射流式微混合器, 2016.1.6,中国, ZL201510604398.4

18.刘赵淼,赵福旺,申峰,王治林.一种基于微气泡驱动的震荡射流式微混合器, 2015.12.30,中国, ZL201510604396.5

19.刘赵淼,王翔,逄燕.上下两壁面可动的微流控芯片的制作方法2015.12.13,中国, ZL201510921393.4

20.刘赵淼,王翔,逄燕.通道侧壁面指定位置可动的微流控芯片2015.10.28,中国, ZL201510712606.2

21.刘赵淼,逄燕,王翔.一种基于支路结构的微液滴控制芯片2015.9.29中国, ZL201510629645.6

22.刘赵淼,逄燕,王翔.基于微通道的下壁面指定位置可动的微流控芯片2015.7.1,中国, ZL201510379947.2

23.刘赵淼,王翔,逄燕.下壁面内凹的微通道的制作方法2015.07.01中国, ZL201510379969.9

24.刘赵淼,逄燕,王翔.单面微米级薄膜微通道的制作方法2015.7.1中国, ZL201510379966.5

25.刘赵淼,逄燕,王翔.利用凹槽实现下底面可动的微通道的制作方法2015.7.1,中国, ZL201510379949.1

26.刘赵淼,王翔,逄燕.下壁面外凸的微通道的制作方法2015.7.1中国ZL201510379963.1.

27.刘赵淼,刘丽昆,曹刃拓,逄燕.实现液滴生成的反Y型通道微流控芯片2015.4.27,中国, ZL201510205382.6

28.Yan Pang,Hyoungsoo Kim,Zhaomiao Liu,Howard A. Stone. Monodispersed droplet generation device by using a passive soft microchannel, 2015.02.10,美国, 62114111

29.申峰,李易,肖鹏,刘赵淼.一种利用PDMS薄膜的形变直接测量微通道内压力装置, 2014.12.24,中国, ZL201410823125.4

30.刘赵淼,曹刃拓,申峰.基于T型通道实现液滴同步融合的微流控芯片2014.12.23,中国, ZL201410806273.5

31.刘赵淼,赵福旺,申峰;董林浩.一种被动式多內肋结构环形微混合器2014.12.21,中国, ZL201410805400.X

32.刘赵淼,赵福旺,董林浩,申峰.一种具有强化换热且有效保持电堆温度均匀性的冷却系, 2014.12.21,中国, ZL201410805398.6

33.申峰,李易,刘赵淼.一种观测微流控芯片的共聚焦光路便携装置, 2014.11.29,中国, ZL201410713787.6

34.申峰,李易,王冉,刘赵淼.一种检测重力作用下垂直微通道流动特性的光路便携装置, 2014.11.29,中国, ZL201410666153.X

35.刘赵淼,逄燕,曹刃拓.基于图像灰度分析的微尺度薄膜振动频率的测量方法, 2014.08.20,中国, ZL201410307243.X

36.刘赵淼,逄燕,曹刃拓.基于T形微通道的弹性壁面微流控芯片2014.08.19,中国, ZL201410306954.5

37.申峰,陈从连,刘赵淼.油腔流场观测装置, 2013.6.1,中国, ZL201310215739.X

【软件著作权】

1.刘赵淼,徐元迪,任彦霖,逄燕,赵圣伟.粒子运动实验图像处理软件V1.0, 2019SR0032244, 2018.11.27

2.刘赵淼,徐元迪,任彦霖,逄燕,赵圣伟,钟希祥,高山山.微滴喷射实验图像处理软件V1.0, 2019SR0056677, 2018.11.27

3.刘赵淼,任彦霖.微液滴图像追踪处理软件V1.0, 2018SR055856, 2017.12.7

4.刘赵淼,王飓.基于Fluent架构的微混合过程压降计算软件V1.0, 2017SR641234, 2017.10.7

5.刘赵淼,任彦霖.微液滴实验图像处理软件V1.2, 2017SR613374, 2017.8.18

6.刘赵淼,王飓,逄燕,李梦麒.微流控液滴几何参数自动测量软件, 2017SR530063, 2017.7.14

7.刘赵淼,王飓,逄燕.基于Fluent架构的微流体混合强度计算软件, 2017SR273892. 2017.3.30

8.刘赵淼,尉舰巍.轴式柱塞泵柱塞偶件间油膜流动规律计算模型的UDF程序生成软件, 2016SR230369, 2016.8.23

9.刘赵淼,王治林.喷嘴喷雾锥角实验处理软件, 2016SR139418, 2016.6.13

联系方式

E-mail:lzm@bjut.edu.cn

通讯地址:北京工业大学平乐园100号,邮编:100124

学校地址:北京市朝阳区平乐园100号
邮政编码:100124

  • 北京工业大学
    研究生招生

  • 北京工业大学
    研究生教育

Copyright © 北京工业大学研究生院版权所有