代表性论文及专利
【期刊论文】
1.Zheng K, Liu Z M*, Pang Y *, Wang X, Zhao S Y, Zheng N, Cai F M, Zhang C C. Predictive Model for Cell Positioning during Periodic Lateral Migration in Spiral Microchannels[J], Analytical chemistry, 2024, 96, 18230−18238
2.Pang Y, Jiao S J, Zhao S Y, Lou Y, Zhang L X, Wang X*, Liu Z M*. Droplet motions directed by an expansion section in the T-junctions[J]. Physics of Fluids, 2024, 36(9): 092036.
3. Pang Y, Li L, Lou Y, Wang X*, Liu Z M *. Equilibrium and self-assembly of Janus particles at liquid-liquid interfaces for the film formation[J]. Colloids and Surfaces B: Biointerfaces, 2024, 244: 114178.
4. Wang X, Sun C, Jia S Y, Pang Y*, Liu Z M*. Flow pattern maps of double emulsions transporting through bifurcation microchannels[J]. Soft Matter, 2024, 20(33): 6544-6557.
5. Liu Z M, Zhang C C, Zhao S Y, Pang Y, Wang X*. Experimental investigation of liquid metal thread breakup in a cross junction[J]. Acta Mechanica Sinica, 2024, 40: 324050.
6. Shen F*, Zhang Y D, Li C Y, Pang Y, Liu Z M *. Merged and alternating droplets generation in double T-junction microchannels using symmetrically inserted capillaries[J]. Microfluidics and Nanofluidics, 2024, 28(5): 29.
7. Shen F*, Cheng S Y, Yang X, Lu X R, and Liu Z M *, Influence of neck width on transient flow characteristics in saccular intracranial aneurysm models[J], Acta Mechanica Sinica, 2024, ISSN 0567-7718.
8. Shen F, Chen J, Li C Y, Liu Z M*. Easy Generation of Droplets in a Capillary Inserted Microchannel [J]. Industrial & Engineering Chemistry Research,2024,63,2021-2030.
9. Cai F M, Liu Z M*, Zheng N, Pang Y, Zhang L X. Lattice Boltzmann study of the effect of metal foam on bubble behavior and heat transfer performance in flow boiling [J], Applied Thermal Engineering, Volume 254, 2024, 123886.
10. Cai F M, Liu Z M*, Zheng N, Pang Y. Numerical study of flow boiling on microcavity surface under the action of an electric field using lattice Boltzmann method [J], Applied Thermal Engineering, Volume 258, 2024, 124512.
11.Pang Y, Zhang Y X,Zhang T J, Qian Z S, Liu Z M*. Analysis of drag reduction and partial setup of riblets surface on the airfoil[J]. Physics of Fluids, 2024; 36(10).
12. Zheng N, Liu Z M*, Cai F M, Zhao S Y, Ren Y L, Pang Y. The morphology regulation mechanism of microdroplet printing based on heterogeneous wettability surfaces[J]. International Journal of Heat and Mass Transfer, 2024. 219: 124830.
13. Zheng N, Liu Z M*, Cai F M, Zhao S Y, Zheng K, Zhang C C, Pang Y. The morphology regulation mechanism during coalescence fusion printing of multiple molten droplets[J]. Physics of Fluids, 2024, 36(10): 102008.
14. Shen F *, Yang X, Li C Y, Wang J, Wu D*, Liu Z M*. Evolution of symmetrical microvortices in a generating microdroplet during neck breakage stage in an altered T-shaped microchannel [J]. Experiments in Fluids, 2024, 65(12): 179.
15.Pang Y*, Jiao S J, Lu Y, Yang Q S, Wang X, Liu Z M*. Asymmetric branch selection and splitting of droplets in T-junction microchannels[J]. Physics of Fluids, 2023, 35(7): 072013.
16.Zhao S Y, Liu Z M*, Ren Y L, Zheng N, Chen R, Cai F M, Pang Y*. Study of micro-scale flow characteristics under surface acoustic waves, Physics of Fluids, 2023, 35(8): 082011.
17.Liu Z M*, Wang Z C, Pang Y*, Su P, Wang X*. Adjustable behaviors and dynamic mechanisms of droplets in the cross junction[J]. Physics of Fluids, 2023, 35(11): 112009.
18.Wang X*, Ma Y L, Zhang C C, Pang Y, Liu Z M*. Flow patterns and dynamic mechanisms of immiscible fluids in cross junctions with different aspect ratios[J]. Experimental Thermal and Fluid Science, 2023, 149: 111019.
19.Liu Z M, Su P, Pang Y, Liu W C, Wang Z C, Wang X*. Dynamic mechanism of double emulsion droplets flowing through a microfluidic T-junction[J]. Physics of Fluids, 2023, 35(7): 072001. (Editor’s Pick).
20.Zheng N, Liu Z M*, Cai F M, Zhao S Y, Ren Y L, Pang Y. The morphology regulation mechanism of microdroplet printing based on heterogeneous wettability surfaces[J]. International Journal of Heat and Mass Transfer, 2024, 219: 124830.
21.Zheng N, Liu Z M∗, Pang Y, Cai F M, Zhao S Y. Study on flow and heat transfer characteristics of 3D molten aluminum droplet printing process[J].International Journal of Heat and Mass Transfer, 2023, 204: 123863.
22.Cai F M, Liu Z M*, Zheng N, Ren Y L,Pang Y.Lattice Boltzmann simulation of the effects of cavity structures andheater thermal conductivity on nucleate boiling heat transfer[J]. Appl. Math. Mech. -Engl. Ed., 2023, 44(6): 981–996.
23.Cai F M,LiuZ M*, ZhengN,Pang Y. Enhanced boiling heat transfer using conducting–insulating microcavity surfaces in an electric field: A lattice Boltzmann study[J]. Physics of Fluids, 2023, 35(10): 107126.
24.Cai F M, Liu Z M*, Zheng N, Ren Y L,Pang Y. Mesoscopic numerical study of the startup characteristics of grooved heat pipe under high heat flux[J].Physics of Fluids, 2023, 35(7): 077106.
25.Liu Z M, Chen R, Tang Z Q, Tian Q, Fang Y C, Li P J, Li L, Pang Y*. Drag Reduction Performance of Triangular (V-groove) Riblets with Different Adjacent Height Ratios. Journal of Applied Fluid Mechanics,2023,16(4): 073325.
26.Li M Q, Theofilos Boulafentis, Antonios Stathoulopoulos, Liu Z M*, Stavroula Balabani*.Flows inside polymer microfluidic droplets: Role of elasticity[J]. Chemical Engineering Science, 2023,278: 118887.
27.Ren Y L, Liu Z M*, Gao S S, Pang Y.Investigation of the molten droplet deposition offset based on the simple-component pseudopotential model. Physics of Fluids, 2023, 35(6): 063326.
28.Liu Z M, Shi K, Cai F M, Ren Y L*.Numerical investigation of mixing efficiency in Janus micro-mixer using lattice Boltzmann method. Physics of Fluids, 2023, 35(7): 073301.
29.Shen F*, Gao J, Ai M Z, Li Z H, Liu Z M*.Mechanism of particle dualorbital motion in a laminar microvortex. Physics of Fluids, 2023, 35(7): 073325.
30.Pang Y*, Li L, Ru J H, Zhou Q, Wang X, Liu Z M*.Interface coupling and droplet size under various flow-focusing geometry dimensions in double emulsion formation. Physics of Fluids, 2023, 35: 122016.
31.Shen F, Zhu L, Ji DR, Zhao S Y, Liu Z M*. Dynamic evolution of oil–water interface during displacement in microcavities[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130698.
32.Shen F, Zhu L, Chen J, Liu Z M*. Water filling of microcavities[J]. Biomicrofluidics, 2022, 16(4): 044108.
33.Pang Y, Lu Y, Zhou Q,Wang X, Wang J, Li M Q, Liu Z M*. Breakup dynamics of emulsion droplet and effects of inner interface[J]. Journal of Food Engineering, 2022, 330: 111088.
34.Gao S S, Liu Z M*, Wang X, Pang Y, Ren Y L, Zhao S Y, Zheng N, Cai F M. Stabilization formation characterization of metal single droplet by pneumatic drop-on-demand[J]. Physics of Fluids, 2022, 34(12): 122010.
35.Pang Y, Yang Q S, Wang X, Liu Z M*. Dripping and jetting generation mode in T-junction microchannels with contractive structures[J]. Physics of Fluids, 2022, 34(9): 092001.
36.Zhao S Y, Liu Z M*, Wang J, Pang Y, Xue S, Li M Q. Formation of high-viscosity micro-droplets in T-channels with neck structure induced by surface acoustic waves[J]. Physics of Fluids, 2022, 34(11): 112012.
37.Liu Z M*, Cai F M, Pang Y, Ren Y L, Zheng N, Chen R, Zhao S Y. Enhanced droplet formation in a T-junction microchannel using electric field: A lattice Boltzmann study[J]. Physics of Fluids, 2022, 34(8): 082006.
38.Wang X, Li D Z, Pang Y, Liu Z M*. Pinch-off dynamics of double-emulsion droplets with/without the influence of interfacial coupling effect[J]. Physics of Fluids, 2022, 34(10): 102003.
39.Liu Z M, Liu W C, Pang Y, Li D Z, Zhang C C, Wang X*. Experimental study on dynamics of double emulsion droplets flowing through the Y-shaped bifurcation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130141.
40.Liu Z M, Ma Y L, Wang X*, Pang Y, Ren Y L, Li D Z. Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels[J]. Experimental Thermal and Fluid Science, 2022, 139: 110739.
41.Wang X, Pang Y, Ma Y L, Ren Y L, Liu Z M*. Thinning dynamics of the liquid thread at different stages in a rectangular cross junction[J]. AIChE Journal, 2022: e17700.
42.Liu Z M, Zhang C C, Zhao S Y, Pang Y, Wang X*. Breakup dynamics and scaling laws of liquid metal droplets formed in a cross junction[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 361-370.
43.Liu Z M, Zhang C C, Pang Y, Liu W C, Wang X*. Dynamics of droplet breakup in unilateral Y-junctions with different angles[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 46-57.
44.Shen F, Ai M Z, Zhao S Y, Yan C J, Liu Z M*. Transient flow patterns of start-up flow in round microcavities[J]. Microfluidics and Nanofluidics, 2022, 26(8): 1-11.
45.Wang J, Liu Z M*, Pang Y, LiMQ. Perturbations of liquid jets with an entering sphere in flow focusing[J]. International Journal of Multiphase Flow, 2022, 147: 103914.
46.Pang Y, Lu Y, Wang X, Liu Z M*. Droplet behavior and its effects on flow characteristics in T-junction microchannels[J]. Physics of Fluids, 2021, 33(6): 062013.
47.Pang Y, Lu Y, Wang X, Zhou Q, Ren Y L, Liu Z M*. Impact of flow feedback on bubble generation in T-junction microchannels under pressure-driven condition[J]. Chemical Engineering Science, 2021, 246: 117010.
48.Liu Z M, Li D Z, Wang X*, et al. Breakup regimes of double emulsion droplets in a microfluidic Y-junction[J]. Physics of Fluids, 2021, 33(10): 102009.
49.Ren Y L, Liu Z M*, Pang Y, Wang X, Xu Y D. Lattice Boltzmann simulation of phase change and heat transfer[J]. Applied Mathematics And Mechanics-English Edition, 2021, 42(4): 553-566.
50.Ren Y L, Liu Z M*, Pang Y, Wang X, Xu Y D. Investigation of dimensional accuracy of metal droplet deposition under repulsion using a lattice Boltzmann approach[J]. Rapid Prototyping Journal, 2021, 27(5): 1020-1029.
51.Li M Q, Liu Z M*, Pang Y, et al. Flow characteristics inside shear thinning xanthan gum non-Newtonian droplets moving in rectangular microchannels[J]. Experiments in Fluids, 2021, 62(10): 1-11.
52.Li M Q, Liu Z M*, Pang Y, et al. An investigation of droplet mobility and the ultra-mild internal mechanical microenvironment in cylindrical microchannels[J]. Physics of Fluids, 2021, 33(10): 102005.
53.Wang J, Liu Z M*, Pang Y , Li M Q, Zhou Q. Breakup of compound jets with inner dropletsin a capillary flow-focusing device[J]. Physics of Fluids, 2021, 33(1): 013304.
54.Wang X, Pang Y, Ma Y L,Liu Z M*. Flow regimes of the immiscible liquids within a rectangular microchannel[J]. Acta Mechanica Sinica, 2021:1.
55.Liu Z M, Zhao S Y, Zhao S, Yin S, Xu Y L, Pang Y*. Study on Flow Characteristics and Influencing Factors in Square WaveMicromixer.Chinese Journal Of Analytical Chemistry.2021,49(10):1666-1677.
56.Shen F, Ai M Z,Li Z H, Lu X R, Pang Y,Liu Z M*. Pressure measurement methods in microchannels: advances and applications. Microfluidics and Nanofluidics, 2021(25):39.
57.Shen F, Li Z H, Ai M Z, Gao H K, Liu Z M*. Round cavity-based vortex sorting of particles with enhanced holding capacity[J]. Physics of Fluids, 2021, 33(8): 082002.
58.LiuZM*, Wang J, PangY, Zhou Q, Li MQ. Role of periodic inner dripping on compound jets in a capillary device[J]. International Journal of Multiphase Flow, 2020, 123: 103180.
59.Pang Y, Du Y, Wang J, Liu Z M*. Generation of single/double Janus emulsion droplets in co-flowing microtube[J]. International Journal of Multiphase Flow, 2019, 111:199-207.
60.Wang X, Liu Z M*, Pang Y. Breakup dynamics of droplets in an asymmetric bifurcation byμPIV and theoretical investigations[J]. Chemical Engineering Science, 2019, 197: 258-268.
61.Wang X, Liu Z M*, Pang Y. Collision characteristics of droplet pairs with the presence of arriving distance differences[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 225-232.
62.Liu Z M*, Li M Q, Pang Y, Zhang L X, Ren Y L, Wang J.Flow characteristics inside droplets moving in a curved microchannel with rectangular section[J]. Physics of Fluids, 2019.
63.Liu Z M*, Zhao S, Wang W, Li M, Pang Y, Yin C, Xu Y. Influence of Geometric Configuration on Mixing Performance of Planar Chaotic Micro-mixer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1321-1329.
64.Liu Z M*, Zhao S W, Shen F, Qi Y P, Wang Q. Influence of coronary bifurcation angle on atherosclerosis[J]. Acta Mechanica Sinica, 2019, 35(6): 1269-1278.
65.Liu Z M*, Du Y, Pang Y. Generation of Water-In-Oil-In-Water (W/O/W) Double Emulsions by Microfluidics[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3):324-330.
66.Zhang L X, Liu Z M*, Pang Y, Wang X, Li M Q, Ren Y L. Trapping a moving droplet train by bubble guidance in microfluidic networks[J]. RSC Advances, 2018, 8(16):8787-8794.
67.Liu Z M*, Zhao J, Pang Y, Wang X. Generation of droplets in the T-junction with a constriction microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(11).
68.Wang X, Liu Z M*, Pang Y. Droplet breakup in an asymmetric bifurcation with two angled branches[J]. Chemical Engineering Science, 2018:S000925091830294X.
69.Liu Z M*, Zhang L X, Pang Y, Wang X, Li M Q. Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel[J]. Microfluidics and Nanofluidics, 2017, 21(12):180.
70.Liu Z M*, Yang Y, Du Y, Pang Y. Advances in Droplet-Based Microfluidic Technology and Its Applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2):282-296.
71.Wang X, Liu Z M*, Pang Y. Concentration gradient generation methods based on microfluidic systems[J]. RSC Adv. 2017, 7(48):29966-29984.
72.Shen F, Li Y, Liu Z M*. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement[J]. Microfluidics and Nanofluidics, 2017, 21(4):66.
73.Shen F, Xu M, Wang Z, Liu Z M*. Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics[J]. Applied Physics Express, 2017, 10(9):097301.
74.Liu Z M*, Wang X, Cao R T, Pang Y. Droplets coalescence at microchannel intersection chambers with different shapes[J]. Soft Matter, 2016, 12(26):5797.
75.Pang Y, Liu Z M*, Zhao F W. Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel[J]. Acta Mechanica Sinica, 2016, 32(4):579-587.
76.Feng S, Li Y, Liu Z M*. Advances in Micro-Droplets Coalescence Using Microfluidics[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12):1942-1954.
77.Liu Z M*, Pang Y. Effect of the size and pressure on the modified viscosity of water in microchannels[J]. Acta Mechanica Sinica, 2015, 31(1):45-52.
78.Liu Z M*, Cao R T, Pang Y, Shen F. The influence of channel intersection angle on droplets coalescence process[J]. Experiments in Fluids, 2015, 56(2):24.
79.Liu Z M*, Liu L K, Shen F. Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels[J]. Acta Mechanica Sinica, 2015, 31(5):741-749.
80.Shen F, Xiao P, Liu Z M*. Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number[J]. Microfluidics and Nanofluidics, 2015, 19(2):403-417.
81.Pang Y, Kim H, Liu Z M*, Stone H*. A soft microchannel decreases polydispersity of droplet generation[J]. Lab Chip, 2014, 14(20):4029-4034.
82.刘赵淼,孙超,逄燕,王翔*.分岔结构处双乳液滴的动力学特性研究[J].力学学报, 2024, 56(4): 1-9.
83.申峰,张杰,艾明珠,张越东,刘赵淼.微流控粒子分选中圆形微凹槽容纳特性研究[J].力学学报,2024,56(05):1317-1327.
84.任彦霖,刘赵淼,逄燕,王翔.基于LBM的铝微滴斜柱沉积水平偏移研究[J].力学学报,2021,53(06):1599-1608.
85.刘赵淼,李泽轩,林家源,逄燕.压力条件对旋流槽数不同的离心式喷嘴液膜破碎及雾化的影响研究[J].机械工程学报,2021,57(04):247-256.
86.刘赵淼,王凯峰,王治林, et al.阶梯型加速段对旋流喷嘴雾化特性的影响[J].力学学报, 2018, v.50(03):126-134.
87.刘赵淼,王文凯,逄燕.扩展腔对方波型微混合器混合性能的影响研究[J].力学学报, 2018, 50(02):254-262.
88.刘赵淼,杨洋.几何构型对流动聚焦生成微液滴的影响[J].力学学报, 2016, 48(4):867-876.
89.刘赵淼,刘佳,申峰.不同重力下90°弯管内气液两相流流型及流动特性研究[J].力学学报, 2015, 47(2):223-230.
90.刘赵淼,赵婷婷,申峰.重力和接触角对表面张力贮箱内液体流动的影响[J].力学学报, 2015, 47(3):430-440.
91.刘赵淼,南斯琦,史艺.中等严重程度冠状动脉病变模型的血流动力学参数分析[J].力学学报, 2016, 47(06):1058-1064.
92.刘赵淼,李锦辉,申峰.收敛楔中黏塑性流体动力润滑性能及边界滑移行为[J].机械工程学报, 2014, 50(9):91-99.
93.刘赵淼,刘丽昆,申峰. Y型微通道中两相界面特性变化分析[J].机械工程学报, 2014, 50(8):189-196.
94.刘赵淼,刘丽昆,申峰. Y型微通道两相流内部流动特性[J].力学学报, 2013, 46(2):209-216.
95.刘赵淼,徐迎丽,申峰.亚声速条件下外形参数对逆流矢量喷管性能影响的模拟研究[J].推进技术, 2014, 35(3):305-313.
【授权发明专利】
1.刘赵淼,陈睿,逄燕,李梦麒,赵思宇,蔡凡茗.一种便携式抽真空PDMS气泡的装置和方法,2022.04.21,中国,ZL 202210427544.0
2.刘赵淼,康子宵,任彦霖,逄燕.基于图像识别的LBM计算域规划方法, 2020.12.6,中国, ZL202011419782.4
3.申峰,薛森,刘赵淼,徐旻.一种可实现正面侧面同时观测的微流控芯片及制备方法, 2018.8.14,中国, ZL201810138013.3
4.刘赵淼,林家源,王凯峰.一种双油路离心式喷嘴, 2018.5.29,中国, ZL 201711358675.3
5.刘赵淼,王翔,逄燕.基于对准结构的固定角度多层微流控芯片制作方法, 2018.3.16,中国, ZL201711139878.3
6.刘赵淼,王翔,逄燕.不同交汇角度的多层微流控芯片的制作方法, 2018.3.16,中国, ZL201711140850.1
7.刘赵淼,王飓,逄燕,李梦麒.基于附加流量实现双乳液滴非对称分裂的微流控芯片, 2018.3.6,中国, ZL201711011350.8
8.申峰,薛森,刘赵淼,李梦麒.一种用于微流控芯片PDMS材料的打孔装置, 2017.11.7,中国, ZL201710665704.4
9.申峰,肖加锋,刘赵淼.一种承载面可运动的油腔观测装置, 2017.12.1,中国, ZL201710665705.9
10.刘赵淼,王翔,逄燕.一种气相辅助的金属微液滴制造装置及方法, 2017.9.5中国, ZL201710536538.8
11.申峰,薛森,刘赵淼.一种用于微凹槽滑动减阻PIV实验中圆盘式实验装置, 2017.6.27中国, ZL201710226519.5
12.刘赵淼,董林浩.一种加入扰流元件的微通道换热器, 2017.5.24中国, ZL201710048017.8
13.刘赵淼,王翔,逄燕.一种利用蜡笔手绘的纸芯片制作方法, 2017.5.10,中国, ZL201610889294.7
14.刘赵淼,王凯峰,王治林.一种可用于喷嘴雾化特性PDA实验的喷嘴夹持控制装置, 2017.3.22,中国, ZL201611117694.2
15.刘赵淼,王翔,逄燕.通道上下两壁面指定位置可变形的微流控芯片, 2017.2.15,中国, ZL201610836147.3
16.刘赵淼,王翔,逄燕.一种测量壁面可变形通道中压力变化的微流控芯片, 2017.2.1,中国, ZL201610757833.1
17.刘赵淼,张龙祥.一种双支路实现微液滴两次分裂功能的微通道2016.12.14,中国, ZL201610693312.4
18.刘赵淼,王治林,赵福旺.一种可用于喷嘴雾化特性PDA实验的喷雾防护罩, 2016.5.11,中国, ZL201610056574.X
19.刘赵淼,赵福旺,申峰,尉舰巍.一种基于脉动流的震荡射流式微混合器, 2016.1.6,中国, ZL201510604398.4
20.刘赵淼,赵福旺,申峰,王治林.一种基于微气泡驱动的震荡射流式微混合器, 2015.12.30,中国, ZL201510604396.5
21.刘赵淼,王翔,逄燕.上下两壁面可动的微流控芯片的制作方法2015.12.13,中国, ZL201510921393.4
22.刘赵淼,王翔,逄燕.通道侧壁面指定位置可动的微流控芯片2015.10.28,中国, ZL201510712606.2
23.刘赵淼,逄燕,王翔.一种基于支路结构的微液滴控制芯片2015.9.29中国, ZL201510629645.6
24.刘赵淼,逄燕,王翔.基于微通道的下壁面指定位置可动的微流控芯片2015.7.1,中国, ZL201510379947.2
25.刘赵淼,王翔,逄燕.下壁面内凹的微通道的制作方法2015.07.01中国, ZL201510379969.9
26.刘赵淼,逄燕,王翔.单面微米级薄膜微通道的制作方法2015.7.1中国, ZL201510379966.5
27.刘赵淼,逄燕,王翔.利用凹槽实现下底面可动的微通道的制作方法2015.7.1,中国, ZL201510379949.1
28.刘赵淼,王翔,逄燕.下壁面外凸的微通道的制作方法2015.7.1中国ZL201510379963.1.
29.刘赵淼,刘丽昆,曹刃拓,逄燕.实现液滴生成的反Y型通道微流控芯片2015.4.27,中国, ZL201510205382.6
30.Yan Pang,Hyoungsoo Kim,Zhaomiao Liu,Howard A. Stone. Monodispersed droplet generation device by using a passive soft microchannel, 2015.02.10,美国, 62114111
31.申峰,李易,肖鹏,刘赵淼.一种利用PDMS薄膜的形变直接测量微通道内压力装置, 2014.12.24,中国, ZL201410823125.4
32.刘赵淼,曹刃拓,申峰.基于T型通道实现液滴同步融合的微流控芯片2014.12.23,中国, ZL201410806273.5
33.刘赵淼,赵福旺,申峰;董林浩.一种被动式多內肋结构环形微混合器2014.12.21,中国, ZL201410805400.X
34.刘赵淼,赵福旺,董林浩,申峰.一种具有强化换热且有效保持电堆温度均匀性的冷却系, 2014.12.21,中国, ZL201410805398.6
35.申峰,李易,刘赵淼.一种观测微流控芯片的共聚焦光路便携装置, 2014.11.29,中国, ZL201410713787.6
36.申峰,李易,王冉,刘赵淼.一种检测重力作用下垂直微通道流动特性的光路便携装置, 2014.11.29,中国, ZL201410666153.X
37.刘赵淼,逄燕,曹刃拓.基于图像灰度分析的微尺度薄膜振动频率的测量方法, 2014.08.20,中国, ZL201410307243.X
38.刘赵淼,逄燕,曹刃拓.基于T形微通道的弹性壁面微流控芯片2014.08.19,中国, ZL201410306954.5
39.申峰,陈从连,刘赵淼.油腔流场观测装置, 2013.6.1,中国, ZL201310215739.X
【软件著作权】
1.刘赵淼,徐元迪,任彦霖,逄燕,赵圣伟.粒子运动实验图像处理软件V1.0, 2019SR0032244, 2018.11.27
2.刘赵淼,徐元迪,任彦霖,逄燕,赵圣伟,钟希祥,高山山.微滴喷射实验图像处理软件V1.0, 2019SR0056677, 2018.11.27
3.刘赵淼,任彦霖.微液滴图像追踪处理软件V1.0, 2018SR055856, 2017.12.7
4.刘赵淼,王飓.基于Fluent架构的微混合过程压降计算软件V1.0, 2017SR641234, 2017.10.7
5.刘赵淼,任彦霖.微液滴实验图像处理软件V1.2, 2017SR613374, 2017.8.18
6.刘赵淼,王飓,逄燕,李梦麒.微流控液滴几何参数自动测量软件, 2017SR530063, 2017.7.14
7.刘赵淼,王飓,逄燕.基于Fluent架构的微流体混合强度计算软件, 2017SR273892. 2017.3.30
8.刘赵淼,尉舰巍.轴式柱塞泵柱塞偶件间油膜流动规律计算模型的UDF程序生成软件, 2016SR230369, 2016.8.23
9.刘赵淼,王治林.喷嘴喷雾锥角实验处理软件, 2016SR139418, 2016.6.13