教育与工作经历
教育经历:
2009/09-2013/07 河南师范大学,本科
2013/09-2019/07 北京师范大学,博士,导师:张辉教授
2017/08-2018/09 南卡罗莱纳大学,联合培养,导师:杨霄锋教授
工作经历:
2019/07-2021/10 北京大学北京国际数学研究中心,博士后,合作导师:张磊教授
2021/11-2024/4北京工业大学,讲师
2024/4至今北京工业大学,副研究员,入选北京工业大学高层次人才队伍建设计划—“青年优秀人才”
代表性成果与荣誉
四、
[1]Y. M. Cui, Y. Niu, and Z. Xu. A second-order exponential time differencing multistep energy stable scheme for Swift-Hohenberg equation with quadratic-cubicnonlinear term, J. Sci. Comput., 99(2024): 26;
[2]Y.Yang, Z. Xu and G. Ji. Modeling and Simulation of Linear TriblockCopolymers under Three-Dimensional Confinement.CSIAM Trans. Appl. Math., 2023,4(3):592-618.
[3]G. Ji, Z. Xu and Y. Yang. An efficient and unconditionally energy stable fully discrete scheme for the confined ternary blended polymers model.CSIAM Trans. Appl. Math., 2022,3:480-514.
[4]Z. Xu, Y. Han, J. Yin, B. Yu, Y. Nishiura and L. Zhang. Solution landscapes of the diblock copolymer-homolymer model under two-dimensional confinement.Phys. Rev. E, 2021, 104:01405.
[5]Z.Xu, X.Yang and H.Zhang,Error analysis of a decoupled, linear stabilization scheme for the Cahn-Hilliard Model of two-phase incompressible flows,J.Sci.Comput.,2020, 83: 57.
[6]Y. Qin, Z. Xu, H. Zhang and Z. Zhang. Fully decoupled, linear, and unconditionallyenergy stable schemes for the binary fluid-surfactant model.Commun. Comput.Phys., 2020, 28(4):1389-1414.
[7]Z. Xu, X. Yang, H. ZhangandZ. Xie.Efficient and linear schemes for anisotropicCahn-Hilliard equations using the stabilized invariant energy quadratization(SIEQ) approach,Comput. Phys. Commun., 2019, 238:36-49.
[8]Z.Xu and H.Zhang, Stabilized semi-implicit numerical schemes for the Cahn-Hilliard-like equation with variable interfacial parameter,J. Comput.Appl. Math.,2019, 346: 307-322.