黄秋梅  

一、个人基本情况

 

1622796715339005447.jpg

姓名:  黄秋梅     性别:               

职称:  教授     所在部门:  数学学院计算数学系               

社会兼职:            

中国数学会理事、北京计算数学学会理事 美国数学会评论员

 

二、主要研究方向

 

有限元方法

积分方程及延迟微分方程的高效数值算法

 

三、教育与工作经历

 

工作经历

2009年至今, 北京工业大学

2016.12-2017.12,美国加州大学尔湾分校,公派访问学者

20168-9月,访问香港理工大学

20087月,访问香港浸会大学

学习经历

20097月,毕业于中科院计算数学研究所,导师:林群院士

20067月,毕业于贵州师范大学,导师:杨一都教授

20007月,毕业于山东师范大学

 

四、主要科研项目

 

2020~2023,国家自然科学基金面上项目,52万,(主持)

2018~2019,国家自然科学基金数学天元基金专项项目,60万,(主持)

2016~2019,国家自然科学基金面上项目,45万,(主持)

2015~2018,国家自然科学基金重大研究计划重点支持项目,300万,(参与);

2015~2017,北京市教委科技面上项目,15万,(主持)

2012~2014,国家自然科学基金青年基金,22万,(主持)

2011~2013,北京自然科学基金面上项目,4万,(主持)

 

五、代表性成果与荣誉

论文

[1]     Y. Hao, Q. Huang, and C. Wang, A third order BDF energy stable linear scheme for the no-slope-selection thin film model, Commun. Comput. Phys., 29 (2021), 905-929

[2]     F. Xu, Q. Huang, M. Wang, and H. Ma, A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates, Applied Mathematics and Computation, 385 (2020), 125404

[3]     F. Xu, Q. Huang, and H. Ma, A novel domain decomposition framework for the ground state solution of Bose-Einstein condensates, Computers & Mathematics with Applications, 80 (2020), 1287-1300

[4]     F. Xu and Q. Huang, Cascadic adaptive finite element method for nonlinear eigenvalue problem based on complementary approach, J. Comput. Appl. Math., 372 (2020), 112720

[5]     F. Xu and Q. Huang, Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems, J. Sci. Comput., 82 (2020), 20

[6]     C. Yao, Y Wei, and Q. Huang*, Post-processing technique of two-grid algorithm for wave propagation with Debye polarization in nonlinear dielectric materials, Appl. Numer. Math., 157 (2020), 405-418

[7]     K. Jiang, Q. Huang*, and X. Xu, Discontinuous Galerkin Methods for Multi-Pantograph Delay Differential Equations, Advances in Applied Mathematics and Mechanics, 12 (2020), 189-211

[8]     F. Xu and Q. Huang, A type of cascadic multigrid method for coupled semilinear elliptic equations, Numerical Algorithms, 83 (2020), 485-510

[9]     F. Xu and Q. Huang, S. Chen, and H. Ma, A Type of Cascadic Adaptive Finite Element Method for Eigenvalue Problem, Advances in Applied Mathematics and Mechanics, 12 (2020), 774-796

[10]  F. Xu and Q. Huang*, An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications, Science China- Mathematics, 2019.10

[11]  F. Xu, Q. Huang*, S. Chen and Tao Bing, An Adaptive Multigrid Method for Semilinear Elliptic Equations, East. Asia. J. Appl. Math., 9 (2019), 683-702

[12]  Q. Huang, S. Jia., F. Xu., Z. Xu., and C. Yao., Solvability of wave propagation with Debye polarization in nonlinear dielectric materials and its finite element methods approximation, Appl. Numer. Math., 146 (2019), 145-164

[13]  F. Xu and Q. Huang, An accurate a posteriori error estimator for semilinear Neumann problem and its applications, Applied Mathematics and Computation, 362 (2019), 124540

[14]  S. Chen and Q. Huang, A finite volume method for a coupled fracture model with matching and nonmatching grids, Appl. Numer. Math., 145 (2019), 28-47

[15]  Q. Huang*, K. Jiang, and X. Xu, Postprocessing of Continuous Galerkin Solutions for Delay Differential Equations with Nonlinear vanishing Delay, Int. J. Numer. Anal. Modeling, 16 (2019), 718-730.

[16]  X. Xu and Q. Huang*, Superconvergence of discontinuous Galerkin methods for nonlinear delay differential equations with vanishing delayJ. Comput. Appl. Math.348 (2019), 314327

[17]  Q. Huang, D. Li, and J. Zhang, Numerical Investigations of a Class of Biological Models on Unbounded Domain, Numer. Math. Theor. Meth. Appl., 12 (2019), 154-168

[18]  Q. Huang, X. Yang, and X. He, Numerical Approximations for a Smectica liquid Crystal Flow Model: First-order, Linear, Decoupled and Energy Stable Schemes, Discrete Cont. Dyn-B, 23 (2018), 2177-2192

[19]  W. Cao and Q. Huang, Superconvergence of Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives, J. Sci. Comput., 72 (2017), 761-791.

[20]  Q. Huang, X. Xu and H. Brunner, Continuous Galerkin Methods on Quasi- geometric Meshes for Delay Differential Equations of Pantograph Type, Discrete Cont. Dyn--A, 36 (2016), 5423-5443.

[21]  X. XuQ. Huang* and H. Chen, Local Superconvergence of Continuous Galerkin Solutions for Delay Differential Equations of Pantograph Type, J. Comput. Math., 34 (2016), 186-199.

[22]  许秀秀,黄秋梅*,拟等级网格下非线性延迟微分方程间断有限元法,计算数学,38 (2016), 281-288

[23]  许秀秀,黄秋梅*,比例延迟微分方程的连续有限元法,数学的实践与认识,(44) 2014, 280-288

[24]  Q. Huang, H. Xie, and H. Brunner. The hp Discontinuous Galerkin Method for Delay Differential Equations with Nonlinear Vanishing Delay. SIAM J. Sci. Comput., 35 (2013), A 1604–1620

[25]  Q. Huang, H. Xie, and H. Brunner. Superconvergence of discontinuous Galerkin solutions for delay differential equations of pantograph type. SIAM J. Sci. Comput., 33 (2011), 2664–2684

[26]  H. Brunner., Q. Huang*, and H. Xie. Discontinuous Galerkin Methods for Delay Differential Equations of Pantograph Type. SIAM Journal on Numerical Analysis, 48 (2010), 1944-1967

[27]  Q. Huang, S. Zhang. Superconvergence of Interpolated Collocation Solutions for Hammerstein Equations. Numerical Methods for Partial Differential Equations, 26 (2010), 290-304

[28]  Q. Huang and H. Xie, Superconvergence of the interpolated Galerkin solutions for Hammerstein equations, Int. J. Numer. Anal. Modeling, 6 (2009), 696-710

[29]  Q. Huang and Y. Yang. A note on Richardson extrapolation of Galerkin methods for eigenvalue problems of Fredholm integral equations. J Comp Math, 26 (2008), 598- 612

[30]  黄秋梅,杨一都,Fredholm积分方程特征值问题配置法外推的Matlab实验,数学的实践与认识,37 (2007), 163-168

[31]  Y. Yang and Q. Huang, A posteriori error estimator for spectral approximations of completely continuous operators, Int. J. Numer. Anal. Modeling, 3 (2006), 361-370

所获荣誉:

2016年,贵州省科技进步二等奖(排名第三);

2014年,贵州省高校科研优秀成果二等奖(排名第三);

2013年,首届全国微课教学比赛北京市优秀奖;

2013年,北京工业大学青年教师基本功比赛二等奖、最佳教案奖、最佳教学演示奖。

入选人才计划:

入选“北京工业大学青年百人”培养计划,2016~2018

入选“北京市科技新星”计划,2015~2017

入选“北京市教委青年拔尖人才”培育计划,2015~2017

入选“北京工业大学日新人才”培养计划,2013~2015

六、指导研究生

作为(共同)指导教师,指导博士生4人,硕士生13人,合作博士后1人(陈双双,北京工业大学)。已毕业博士生1人,目前在安徽大学从事教学科研工作。

七、主讲课程

本科生课程:高等数学、工程应用与科学计算专题选讲

研究生课程:高等数值分析、计算数学选讲、积分方程数值解

 

 

八、联系方式

 

地址:北京市朝阳区平乐园100号北京工业大学理学部 100124                     

办公房间号:数理楼303

电话:010-67392505

E-mailqmhuang@bjut.edu.cn

北京工业大学研究生招生办公室 地址:北京市朝阳区平乐园100号 邮政编码:100124 联系电话:010-67392533