李昂  

                                               

 李昂.jpg

一、个人简介

李昂,副研究员,博士生导师。从事环境条件下服役状态纳米材料的显微结构演化与使用性能的基础应用研究。近5年以第一作者、通讯作者或合作者在Nature子刊,Adv. Mater.,Acta Mater. ,Nano Energy,J. Am. Chem. Soc. ,Nano Res. ,Nano Lett. ,ACS Appl. Mater. Interfaces,Corros. Sci. ,Scr. Mater.等纳米材料和半导体、催化、结构材料、能源交叉领域发表论文40余篇,他引1900余次;h因子21,i10因子35。参与ACS Catal.,Chem. Mater.,ACS Appl. Nano Mater.,ACS Appl. Mater. Interfaces,Semicond. Sci. Technol.,J. Alloy Compd.等SCI期刊审稿工作。2016年入选北京市特聘教授青年项目,作为项目负责人承担国家自然科学基金、科技部国家重点研发计划及省部级以上科研基金。

招生学科: 物理学0702(材料与制造学部 固体微结构与性能研究所)

二、学习工作经历

2003.09 至 2007.07   吉林大学材料物理专业                                 本科生

2007.09 至 2009.01   吉林大学材料物理与化学专业                       硕士研究生

2009.01 至 2014.03   意大利比萨高等师范学校自然科学院凝聚态物理专业   博士研究生

2012.02 至 2013.08   意大利国家纳米科技中心、意大利国家科学院纳米所       研究员

2013.04 至 2015.03   荷兰埃因霍温理工大学应用物理系                 博士后研究员

2015.04 至 2016.02   荷兰代尔伏特理工大学应用物理系                 博士后研究员

2013.04 至 2016.02   荷兰飞利浦创新中心                               客座研究员

2015.11 至   今      北京工业大学固体微结构与性能研究所                 副研究员

三、研究方向:

1.原位环境电子显微学(in situ ETEM):多场耦合环境中通过球差环境透射电镜原子尺度原位研究材料显微结构与性能的演化规律。                                           

2.半导体纳米结构外延生长(Semiconductor Epitaxy):基于催化/自催化实现纳米半导体异质结构的图案化气相外延生长,刻蚀,加工与器件生长。

四、近期主持或参与科研项目:

1.   国家自然科学面上基金:一维III-V族半导体纳米线在二维材料表面范德华外延生长及机理的研究(主持)

2.   北京市自然科学基金重点项目:气氛环境下极小尺寸材料表面和界面原子与气体作用机理的原位动态研究(课题负责人)

3.   中国人民共和国科技部国家重点研发计划-政府间合作项目:电子化学和表面催化在能量转化中应用(课题负责人)

4.   国家自然科学基金面上项目:SnSe基单晶热电材料缺陷与费米能级位置调控的研究(参与)

五、 近期主要工作:

u  原位环境电子显微学(in situ ETEM):

1.  Oxidation-induced Rhenium evaporation in Ni-based single crystal superalloy thin lamella. Scripta Materialia 2021, 114106.

2.  In Situ Atomic-scale Observation of AuCu Alloy Nanowire with Superplasticity and High Strength at Room Temperature. Materials Today Nano 2021, 15, 100123.

3.  Initial oxidation of Ni-based superalloy and its dynamic microscopic mechanisms: the interface junction initiated outwards oxidation. Acta Materialia 2021, 116991.

4.  Selective oxidation of nanoscale nickel-based superalloys revealed by multi-dimensional electron tomography. Materials Characterization 2021, 178, 111219.

5.  Co and Pt Dual‐Single‐Atoms with Oxygen‐Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials 2021,33, 2003327.

6.  Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy 2021, 105799.

7.  Confined Ru nanocatalysts on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem 2021, 13,534-538.

8.  Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A 2020, 8 (43), 22607-22612.

9.  Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angewandte Chemie International Edition 2020, 59 (3), 1295-1301.

10.Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy. Acta Materialia 2020, 185, 233-244.

11.In situ oxidation analysis on Co-Al-W-Ti-Ta single-crystal alloy in an environmental TEM. Corrosion Science 2020, 108725.

12.Dynamic Epitaxial Crystallization of SnSe2 on Oxidized SnSe Surface and its Atomistic Mechanisms. ACS Applied Materials & Interfaces 2020, 12, 27700-27707.

13.Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature communications 2020, 11 (1), 1-11.

14.Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry 2020, 12 (8), 764-772.

15.Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Research 2020, 13 (11), 3019-3024.

16.A comparative study of rafting mechanisms of Ni-based single crystal superalloys. Materials & Design 2020, 196, 109097.

17.Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angewandte Chemie International Edition 2020,60,6170-6176.

18.Multidimensional microscopic investigation of oxidation-induced hollow cavities in a Co–Al–W–Ti–Ta alloy nanotip by electron tomography. Journal of Alloys and Compounds 2020, 848, 156243.

19.Ultrahigh Photocatalytic Rate at a Single-Metal-Atom-Oxide. Advanced Materials 2020, 80,547-570.

20.Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie International Edition 2020, 59, 1295-1301.

21.Effect of Cr on the microstructure and oxidation properties of Co-Al-W superalloys studied by in situ environmental TEM. Corrosion Science 2019, 161, 108179.

22.Low Temperature Oxidation of Ethane to Oxygenates by Oxygen over Iridium-Cluster Catalysts. Journal of American Chemical Society 2019, 141 (48), 18921-18925.

23.Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction. Journal of American Chemical Society 2019, 141 (42), 16569-16573.

24.Magnetically recoverable Ag/Bi2Fe4O9 nanoparticles as a visible-light-driven photocatalyst. Chemical Physics Letters 2019, 715, 129-133.

25.Enhanced thermoelectric performance in Cu2GeSe3 via (Ag, Ga)-co-doping on cation sites. Journal of Alloys and Compounds 2018, 769, 218-225.

26.Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nature Catalysis 2018, 1 (11), 889-896.

27.Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society 2018 140, (45), 15336-15341.

28.Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature nanotechnology 2018, 13 (9), 856-861.

29.Ultra-high average figure of merit in synergistic band engineered SnxNa1-xSe0.9S0.1 single crystals. Materials Today 2018, 21 (5), 501-50.

30.A second amorphous layer underneath surface oxide. Microscopy and Microanalysis 2017, 23 (1), 173-178.

u  半导体纳米结构外延生长(Semiconductor Epitaxy)

1.  Observation of the antiferromagnetic spin Hall effect. Nature Materials 2021, 20, 800–804.

2.  Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality. Nature Nanotechnology 2021, 16, 308–312.

3.  Growth and strain relaxation mechanisms of InAs/InP/GaAsSb core-dual-shell nanowires. Crystal Growth & Design 2020, 20 (2), 1088-1096.

4.  Kinetic control of morphology and composition in Ge/GeSn core/shell nanowires. ACS nano 2020, 14 (2), 2445-2455.

5.  Large exchange splitting in monolayer graphene magnetized by an antiferromagnet. Nature Electronics 2020, 3, 604–611.

6.  Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon. Optics Letters 2020, 45 (19), 5468-5471.

7.  Growth and Strain Relaxation Mechanisms of InAs/InP/GaAsSb Core-Dual-Shell Nanowires. Crystal Growth & Design 2020, 20 (2), 1088-1096.

8.  Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge–Si Nanowires. Nano letters 2020, 20 (1), 122-130.

9.  Strain engineering in Ge/GeSn core/shell nanowires, Applied Physics Letters 2019, 115 (11), 113102.

10.Multiple Andreev reflections and Shapiro steps in a Ge-Si nanowire Josephson junction. Physical Review Materials 2019, 3 (8), 084803. (Semiconductor Epitaxy)

11.Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology 2019, 30 (19).

12.Josephson Effect in a Few-Hole Quantum Dot. Advanced materials 2018, 30 (44), 1802257.

13.Spin-Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas. Nano letters 2018, 18 (10), 6483-6488.

14.Boosting Hole Mobility in Coherently Strained [110]-Oriented Ge-Si Core-Shell Nanowires. Nano letters 2017, 17 (4), 2259-2264.

15.Growth and Optical Properties of Direct Band Gap Ge/Ge0.87Sn0.13 Core/Shell Nanowire Arrays. Nano letters 2017, 17 (3), 1538-1544.

16.Atom-by-atom analysis of semiconductor nanowires with parts per million sensitivity. Nano letters 2017, 17 (2), 599-605.

五、联系方式:

Email: ang.li@bjut.edu.cn

http://yanzhao.bjut.edu.cn/ds/13/20151124/14483631395984656_1.html

https://scholar.google.com/citations?user=C4tkMGYAAAAJ&hl=en



北京工业大学研究生招生办公室 地址:北京市朝阳区平乐园100号 邮政编码:100124 联系电话:010-67392533